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Empirical validation of a modern genetics progression web for
college biology students
Amber Todd a and William L. Romineb
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ABSTRACT
Research in learning progressions (LPs) has been essential towards
building understanding of how students’ ideas change over time.
There has been little work, however, into how ideas between
separate but related constructs within a multi-faceted LP relate.
The purpose of this paper is to elaborate on the idea of
progression webs to model connections within and between
related constructs simultaneously, and to explain and
demonstrate the efficacy of path analysis towards validating a
hypothesised progression web for understanding of modern
genetics. Specifically, we evaluate strength of evidence for a
progression web based upon multiple related constructs within a
multi-faceted LP describing undergraduate biology students’
understanding of genetics. We then utilise the progression web to
generalise theory around how undergraduate students
understand relationships between related genetics concepts, and
how they use simpler concepts to scaffold those which are more
complex.
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Introduction

Learning progressions (LPs) are currently a major area in science education research, and
as such, LP ideas are included in A Framework for K-12 Science Education (National
Research Council [NRC], 2012) with the idea that progressions may help with current
reform efforts. LPs are hypothetical models of student learning (Corcoran, Mosher, &
Rogat, 2009) that describe ‘successively more sophisticated ways of reasoning within a
content domain that follow one another as students learn’ (Smith, Wiser, Anderson, &
Krajcik, 2006, p. 1). LPs are similar to (but distinct from) past studies that have described
how children’s ideas develop over time (Brown & Campione, 1994; Bruner, 1960; Carpen-
ter & Lehrer, 1999). The distinct characteristics of LPs are that (1) they are focused on a
few content ideas and/or practices, (2) they contain upper and lower bounds, (3) they
identify varying levels of achievement in terms of learning performances, and (4) achieve-
ment is reached through targeted instruction and curriculum but is not guaranteed even
with this instruction (Corcoran et al., 2009; Duncan & Hmelo-Silver, 2009; NRC, 2007).
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Many LPs are multi-faceted in that they contain several constructs or ideas within the
single domain described by the LP (e.g. Berland & McNeill, 2010; Duncan, Rogat, &
Yarden, 2009; Plummer & Krajcik, 2010; Smith et al., 2006; Songer, Kelcey, & Gotwals,
2009). Multi-faceted LPs are organised around ‘big ideas’ or ideas that are central to the
LP’s domain; these ideas are often referred to as constructs.

Though empirical data and prior research are taken into consideration when construct-
ing LPs, they remain hypothetical models until they are tested empirically through mul-
tiple iterative rounds of testing; thus LPs are empirical models of cognition that are
testable. Along with empirically testing the upper and lower bounds and learning perform-
ances (levels) between the bounds and making the necessary changes, LP revisions also
include determining connections between multiple constructs within the same LP (Shea
& Duncan, 2013). Multi-faceted LPs go beyond a simple progression of a single idea
which addresses a single topic within a domain to a progression along a web of intercon-
nected ideas in different constructs. Figure 1 is an illustrative example of a multi-faceted
LP. We propose this web of interconnected ideas between constructs in a multi-faceted LP
be called a progression web, emphasising not only the connection between ideas along the
same topic (construct), but also interconnections between ideas across multiple related
constructs within a domain (Figure 1).

Figure 1. Sample progression web illustrating connections between and within constructs in a multi-
faceted learning progression. Constructs 1–4 each contain four levels, increasing in complexity from left
to right. Progress within each of these constructs is shown by solid arrows pointing in the direction of
increasing complexity. Progress between constructs is shown by dashed arrows pointing in the direc-
tion of increasing complexity.
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As Figure 1 shows, a progression web contains the connections within constructs
(Figure 1, solid arrows) as would be expected in a traditional learning progression frame-
work. However, the web also contains connections between related constructs (Figure 1,
dashed arrows). The ‘progression’ aspect lies in the fact that all connections generally
trend from less advanced to more advanced ideas. The motivation behind identifying con-
nections between constructs in a multi-faceted LP, creating a progression web, is that
when constructs are related, understanding of a basic idea in one construct will not
only lead to understanding more advanced ideas within that same construct but
between related constructs too. For example, Figure 1 illustrates how understanding of
the high level of construct 2 influences understanding of the highest level of construct 2
as well as the highest levels of constructs 1 and 3. This is similar to the complex relation-
ships represented in a concept map, only placing greater emphasis on a progression of
ideas from lower levels to higher levels (Plummer & Krajcik, 2010; Schwarz et al., 2009;
Wilson, 2009a). For a more detailed examination of these hypothesised connections, we
will now discuss our modern genetics progression web.

Development of our modern genetics progression web

In our previous research, we described hypothetical connections between concepts in a
modern genetics learning progression, creating a progression web of what a proficient-
level understanding of the domain at the level of post-high school biology instruction
may look like (Todd & Romine, 2016). These connections were informed by our previous
research (Todd, 2013; Todd & Kenyon, 2016; Todd & Romine, 2016; Todd, Romine, &
Cook Whitt, 2017) and research in the content domain. Of particular interest, the
Duncan LP outlined eight constructs each with three levels in a genetics progression
but did not make any connections between different construct ideas (Duncan et al.,
2009), and the Roseman LP outlined ideas and connections between these ideas in a gen-
etics progression but did not group these ideas into separate constructs with defined levels
(Roseman, Caldwell, Gogos, & Kurth, 2006). Constructs in the Duncan LP related to one
or more of the different ‘models’ in genetics: molecular, genetic, and meiotic described by
Stewart, Cartier, and Passmore (2005); though the constructs are all ideas in genetics, thus
likely related, they are distinct ideas. Our previous work combined the ideas of both pro-
gressions into one dimension (Todd, 2013; Todd & Kenyon, 2016), but did not hypoth-
esise relationships between the constructs until recently (Todd & Romine, 2016).

We used our revisions to the Duncan LP as a basis for creating our progression web
(Todd, 2013; Todd & Kenyon, 2016; Todd et al., 2017). Our revisions included adding
several additional levels in each construct (each construct now contains 5–7 levels) as
well as a few additional constructs (to make 12 total). Table S1 summarises the ideas for
each construct and levels within the constructs. For our proficient-level progression
web, we connected the levels in the same construct in ascending order, indicating that
knowledge of a lower level within a construct would help support knowledge of the
more advanced level within that construct (Figure 2). In our model, these are represented
by solid lines that narrow towards the more advanced idea (Figure 2, see line between B1
[construct B, level 1] and B2 [construct B, level 2] as an example). We chose to exclude con-
struct A from our progression web because our revisions to this construct defined each
level as being able to correctly identify a relationship between one more of the concepts
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of gene, chromosome, genome, cell, DNA, and nucleotide/base. Therefore, an understanding
of how genes relate to DNA would be at the same level (construct A, level 2) as an under-
standing of how chromosomes relate to cells despite the knowledge being very different
(Todd et al., 2017). Since the same level can and does represent a variety of different con-
ceptions, we chose to exclude this construct from our progression web.

The main connections of interest are the connections between different constructs in
the progression web, represented by arrows in our model (Figure 2). We connected
ideas thought to influence other ideas; that is, achievement of one concept may depend
on achievement of another concept. For example, concept B3 is the idea that genes instruct
the body at different levels; we hypothesised this knowledge would scaffold two ideas: (1)
that DNA tells cells to be different (D3) and (2) that changes to genes change cells (C22).
We reasoned that once a student understood that genes were instructions for the body at
different levels (i.e. cellular, tissue, organ, etc.) they would be in a better position to under-
stand that DNA tells cells to be different and that if you change a gene the cell would
change in response to that change. In Figure 2, we drew arrows from the concept we
hypothesised would influence the others so that the arrow head pointed at the more
complex idea (i.e. B3→D3, B3→C22).

We used a variety of sources to inform our hypothesised connections between concepts.
The previously described connections (B3→D3, B3→C22) were mainly informed by our
knowledge of the domain, knowledge of expert reviews of our assessments, and previous
research findings (Todd, 2013; Todd & Kenyon, 2016; Todd et al., 2017). The Roseman
genetics LP (Roseman et al., 2006) was also useful for informing connections; for

Figure 2. Hypothetical progression web model of proficient-level understanding of modern genetics.
Letters correspond to construct and numbers correspond to level where B1 is construct B, level 1 and
C11 is construct C1, level 1. Table S1 contains a shortened description of each construct and their levels.
Connections between ideas in the same construct are connected by lines, narrowing towards the more
complex idea (higher level). Arrows indicate connections between ideas in different constructs where
arrow directionality indicates ideas (arrow tail) that influence understanding of a more complex idea
(arrow head).
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example, the authors hypothesised a concept that corresponds to E2 (information passed
from parents to offspring are coded in DNA) influenced a concept that corresponds to F3
(heritable characteristics produced in an organism can be observed at the molecular and
whole organism level). We agreed with this hypothesis and included it in our progression
web (Figure 2, E2→ F3). We also used Rasch analysis from our prior work (Todd &
Romine, 2016) to inform our hypothesised connections. For example, the measure
where a student is most probable to achieve level 5 of construct E (chromosomes can
swap sections increasing genetic variation) is at a lower measure than level 5 of construct
G2 (DNA changes lead to increased genetic variation and evolution), indicating it takes
more ability in modern genetics knowledge to achieve level 5 of G2 than level 5 of
E. We hypothesised these ideas to be related and thus connected these ideas together
from E5 to G25 (Figure 2).

In developing our proficient-level progression web, we wish to emphasise that this ‘pro-
ficient-level understanding’ is at a level that could reasonably be expected to be obtained
after high school biology instruction, not a level to be expected after graduate work within
the genetics domain. Both the Duncan LP and Roseman LP set the upper bounds for their
progressions at grade 10 (Duncan et al., 2009; Roseman et al., 2006). Our previous work
used 10th-grade students to empirically test and revise the Duncan LP; indeed, we deter-
mined some 10th-grade students were able to achieve these highest learning performances
after instruction (Todd, 2013; Todd & Kenyon, 2016). This is not to say that all students
achieved the highest learning performances, but that these were not unreasonable expec-
tations for 10th-grade students. Thus, our proficient-level progression web represents a
complex understanding of genetics at the level of high school biology instruction. Our pro-
ficient-level progression web also contains connections between the wide range of con-
cepts across all levels of the progression, not just the advanced concepts. We included
all of these in our proficient-level progression web to indicate that a proficient-level under-
standing consists of understanding how the wide range of concepts support one another.
That is, we hypothesise a student at the proficient-level understands the basic idea of how
organisms having different traits or functions supports the idea that organisms have differ-
ent versions of traits (Figure 2, G11→G21) as well as the more complex idea that changes
to genes change protein functions to change traits supports the idea that the environment
can change genes which change proteins or gene expression of proteins (Figure 2, C26→
H6). Thus, a proficient-level understanding is a more sophisticated web of progression
ideas than a novice-level understanding.

Purpose of the research

Our research in LPs has focused on the domain of modern genetics. We conducted inter-
views and written assessments to empirically test the Duncan et al. (2009) genetics LP
Todd, 2013; Todd & Kenyon, 2016), revising and refining all of the constructs as well
as splitting two constructs and adding new constructs. Based on these new constructs,
we then developed and validated our Learning Progression-based Assessment of Modern
Genetics (LPA-MG) using the Rasch model; Version one was validated in a high school
context in a longitudinal study (Todd et al., 2017) and Version two was validated in a
college context with a heterogenous group of introductory biology students (Todd &
Romine, 2016). Using data collected from the LPA-MG as well as our knowledge of the
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domain and prior literature, we hypothesised connections between ideas in the multi-
faceted LP, creating a hypothetical progression web (Todd & Romine, 2016; Figure 2).
The next step was to now use data to empirically test the hypothesised relationships
between ideas in the LP within a statistical framework.

Some LPs contain hypothetical connections between constructs (e.g. Songer et al.,
2009), or a web of related ideas progressing in complexity, but many do not (e.g.
Berland & McNeill, 2010; Duncan et al., 2009; Smith et al., 2006). A significant impedi-
ment to developing such complex progression models is that they are difficult to test in
a confirmatory way. In a later paper, Shea and Duncan (2013, p. 19) explain that ‘we
did not include any hypotheses regarding interrelationships or dependencies between con-
structs; there was simply not enough evidence in the literature to support such assertions’
in the original Duncan et al. (2009) LP. They proceeded to use interviews and written arte-
facts to identify potential contingencies between two of eight constructs in their multi-
faceted LP (Shea & Duncan, 2013).

Given our recent work in the field of genetics LPs (Todd, 2013; Todd & Kenyon,
2016; Todd et al., 2017) and our recently proposed hypothetical connections between
constructs in a genetics LP (Todd & Romine, 2016), this study addresses the next chal-
lenge which is to either confirm or falsify the presence of these connections between
ideas. As our proficient-level progression web (Figure 2) represents a complex under-
standing of genetics at the level of high school biology instruction, we used undergradu-
ate students at the end of a majors biology course that addresses the genetic concepts
assessed as our sample since it could be reasonably expected that these students
would have a proficient-level understanding of genetics. Our study focuses on the fol-
lowing research questions: (1) Can we use path analysis to evaluate the extent to
which data collected from undergraduate biology students support the hypothesised
progression web model for proficient-level understanding of genetics as hypothesised
by Todd & Romine (2016)?, and (2) What connections do introductory college
biology students make between related genetics concepts?

Methods

Description of path analysis

Path analysis is a statistical method that allows one to assess the strength of evidence for
theoretical models based on data (Anderson & Gerbing, 1988). It is an extension of mul-
tiple regression and can be viewed as a simplification of structural equation modelling
(SEM) in that it treats variables as observed with perfect precision (i.e. there are no
latent variables). Given that scientific theories, like our progression web, emphasise expla-
nation of phenomena through causal processes, path analysis has proven to be an invalu-
able tool across the social sciences (Russo, 2009); we contend that this is also a useful
technique for validating progression web models since these contain multiple process
links in a single model.

The case for using path-like modes for validation of construct maps containing cross-
links between ideas in related constructs was proposed by Wilson (2009a, 2009b). He
describes a general framework called ‘structured constructs modeling (SCM)’ (Wilson,
2009b, p. 328), as a method for dealing with complex progression webs which contain
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links between ideas in related constructs. Specifically, if steps within a construct are out-
lined in a continuous scoring scheme, then SEM may be sufficient to model how con-
structs connect. SCM is an extension of SEM which allows the researcher to treat steps
within a construct as unique ordered latent classes, as opposed to a location along a con-
tinuous scale. Wilson notes, however, that there are many potential methods for modelling
complex networks of ideas within a multi-faceted LP. We describe use of SEM in the
context of a Guttman scoring scheme to follow.

Coding of data for path analysis

In this study, we take advantage of the fact that the LPA-MG has been validated in mul-
tiple studies to invoke an a priori assumption of ordering of ideas within each construct.
We coded each student’s location along the construct within each item using a Guttman
scoring scheme (Guttman, 1950), where a student was given a ‘1’ if he/she had met or
exceeded the construct level, or a ‘0’ if he/she had not yet met that level within the
item. For example, Construct B (genes code for proteins) had six levels within that con-
struct. A student identifying with the first level on Item V4 would be given a score, ‘1 0
0 0 0 0’ on that item while another student identifying with the fifth level would be
given a score, ‘1 1 1 1 1 0’. Since we assigned three items to each construct (for
example, items V4, V5, and V6 were assigned to Construct B), an average of the three
items was taken to obtain a student’s final score along each level. For example, if a
student identified with level 4 on item V4, level 4 on item V5, and level 5 on item V6,
then the respective Guttman scores would be, ‘1 1 1 1 0 0’, ‘1 1 1 1 0 0’, and ‘1 1 1 1 1
0’, which would average to ‘1 1 1 1 0.33 0’. This average would indicate that this
student had met or exceeded levels 1, 2, 3, and 4, but had not met level 6, on all items.
The score of 0.33 on level 5 indicates that he/she has begun to identify with that idea,
but has not yet mastered it.

At this point, we would like to note that while the score of 0.33 looks like it lies along a
continuous scale, it is actually categorical data in the sense that a student’s average
response on each construct level can take only four possible ordered values: 0, 0.33,
0.66, and 1. This said, treating these scores as continuous simplifies the problem greatly
and makes it more tractable (Wilson, 2009b). Upon visual inspection of p–p plots and cal-
culation of skewness and kurtosis values, we found that students’ responses on respective
levels of each construct showed approximate normality. Skewness values ranged between
−1.7 and 1.8, and centred kurtosis values fell between −1.2 and 2.9, indicating that
response distributions showed sufficient normality for use of SEM with maximum likeli-
hood estimation (West, Finch, & Curran, 1995).

Assumptions of path analysis as they relate to progression web models

Learning progression theory is largely hierarchal in nature as we want to show that lower
level ideas precede, or lead to, higher level ideas. While SEMs are used extensively to
provide evidence for causality, path coefficients and statistical fit of an SEM cannot
imply causality directly (Russo, 2009); we must address some key assumptions before
relying on path analysis to validate our progression web as a causal system: (1) existence
of the model and absence of alternative explanations for the data, (2) directional and
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temporal causality, and (3) identified distribution (Kline, 2015). Foremost to make a case
for causality using path analysis, we must assume that our progression web model (Figure
2) is laid out the way it actually exists in learners. The validity of this assumption is sup-
ported by the extensive prior work used to build the theory proposed in Figure 2 (dis-
cussed in the previous section) – this study is much more confirmatory than
exploratory. This said, given that science is tentative and that theories cannot be
‘proven,’ the assumption of nonexistence of alternative explanations should always be
held with caution (Lederman, Abd-El-Khalick, Bell, & Schwartz, 2002). The next two
assumptions relate to causality as it is proposed in the model. The assumption of direc-
tional causality means that the direction of the arrows is specified correctly. In the
context of the extensive theoretical work with this LP (Todd, 2013; Todd & Kenyon,
2016; Duncan et al., 2009; Duncan, Castro-Faix, & Choi, 2016; Freidenreich, Duncan, &
Shea, 2011; Shea & Duncan, 2013; Shea, Duncan, & Stephenson, 2015), it is reasonable
to assume that lower level ideas mediate higher level ideas as indicated in Figure 2, and
our previous validation work (Todd & Romine, 2016; Todd et al., 2017) indicates that
the LPA-MG is able to generate measures which reflect this. Temporal causality, the
assumption that students reside at a lower level of a progression before advancing to a
higher level, is also easy to justify in an LP context. Finally, the use of a parametric mod-
elling technique requires the assumption that the distribution of the data is known. In the
preceding paragraph, we describe our invocation of the assumption that our data are nor-
mally distributed and make the case that our data conform reasonably to this assumption.

Using path analysis

Since our data, our coding method, and the model (Figure 2) met the assumptions of path
analysis specified above, we proceeded to use path analysis as a tool for assessing the
strength of evidence provided by our data for the progression web specified in Figure 2.
Analyses were carried out using the maximum likelihood estimation procedure in the
Mplus 7 software package (Muthén & Muthén, 2007). Model fit was evaluated using
the root-mean-square error of approximation (RMSEA), the normed chi square (χ2/df),
the Tucker–Lewis Index and the Comparative Fit Index (CFI). Values below 0.06 (for
the RMSEA) (Hu & Bentler, 1995), below 2 (for the normed chi square) (Ullman,
2001), and above 0.9 (for the TLI and CFI) (Bentler, 1990; Hu & Bentler, 1995), respect-
ively, are indicative of good fit of the model with the data. Since our model meets the
assumptions outlined above, good fit of the model with the data can be used to support
the case that the data provide strong evidence for the existence of our progression web
as outlined in Figure 2 and trustworthiness of the path coefficients and their standard
errors.

Data collection

Using path analysis as described in the previous section and our hypothetical pro-
gression web model (Todd & Romine, 2016, Figure 2), we used data from Version 2
of the LPA-MG given to college introductory biology students (Todd & Romine,
2016) to determine the strength of relationships between ideas in the modern genetics
progression web (Figure 2). Our sample contained 316 students (138 biology majors,
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174 non-biology majors, 4 unknown) from a Midwestern open-enrolment research uni-
versity. Students were given the assessment as an extra credit assignment within a college
introductory biology course; topics in this course included genetics and the molecular
and cellular basis for the unity of life, including the concepts assessed by our instrument.
Students completed the assessment using Qualtrics survey software during the last few
weeks of the course after these concepts were discussed. The course is a traditional intro-
ductory biology general education course with three hours of lecture and two hours of
lab per week for four semester credit hours. More information about the assessment
administration, items (including the full instrument), and scoring can be found in
Todd & Romine (2016).

We developed the LPA-MG using an LP framework with ordered multiple choice
(OMC) items (Todd et al., 2017). Each item is tied to a specific construct in the LP
and each of the distractors for items is tied to a specific level of that construct. As gues-
sing can be a serious concern for OMC assessments, we implemented a Certainty of
Response Index (described in our previous work with the LPA-MG [Todd et al.,
2017; Todd & Romine, 2016] and in Romine, Schaffer, & Barrow, 2015). Our previous
work demonstrated Version 2 of the LPA-MG provided Rasch measures that were valid
and reliable with respect to the partial credit model (Masters, 1982) with this popu-
lation of college students (Todd & Romine, 2016). The LPA-MG conformed to the
assumptions of unidimensionality and local independence. Total reliability for
student measurement was 0.86 (2.47 separation) and item locations along the Rasch
scale were estimated with a reliability of 0.98 (6.45 separation), which is more than suf-
ficient for establishing reliability. Distribution of person and item measures was also
comparable, indicating the assessment was not too difficult or too easy for the students
(Todd & Romine, 2016). Therefore, our assessment with this population of students
was valid and reliable, and data collected are appropriate to use to test our hypothetical
progression web model.

Given that our data and goals for our analysis meet the assumptions of path analysis,
the strength of the relationship between students’ response patterns on the respective
levels of each construct were used to provide evidence for causation. Specifically, some stu-
dents who mastered one level of a construct should have a tendency to master the higher
level of that construct, while other students may not master that level of the construct. This
is used as evidence that the lower level of the construct supports the higher level. For
example, we hypothesise a connection from C26→H6. This indicates that knowledge of
concept C26 supports understanding of concept H6 (Table 1). Evidence to support this
hypothesised connection would be that many students who mastered C26 also mastered
H6, but that some mastered C26 but had not yet mastered H6. If these levels had zero
relationship, that would imply no similarity in response patterns, lending evidence that
the two levels are not related. A negative relationship would imply that lack of mastery
of C26 would support H6 (or that mastery of C26 would support lack of mastery of H6)
– this would raise questions of test validity. A perfect relationship between the two
would imply that they are the exact same idea, which would also be a cause for concern
with respect to our test and progression model. Given this parameterisation, we expect
ideas connected within constructs to have relatively high path standardised coefficients
(but less than 1), and connections between ideas in different constructs to be less in
magnitude.
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Table 1. Description and standardised path coefficients of hypothesised links between construct ideas.
Link between
construct ideas Description of hypothesised link

Standardised path
coefficient

B2→C21 ‘Genes are informational’ supports ‘changes to genes change traits’ 0.53***
B3→C22 ‘Genes instruct the body at different levels’ supports ‘changes to genes

change cells’
0.09*

B3→D3 ‘Genes instruct the body at different levels’ supports ‘DNA tells cells to be
different’

0.05

B5→C23 ‘Genes code for proteins’ supports ‘changes to genes change proteins’ 0.08***
B5→D6 ‘Genes code for proteins’ supports ‘somatic cells have the same DNA to

express different proteins’
−0.03

B5→G16 ‘Genes code for proteins’ supports ‘the more conserved DNA is between
species, the more important the gene product’

−0.01

C11→D2 ‘Cells perform functions’ supports ‘cells are different because they have
different functions’

0.01

C13→D4 ‘Proteins do the cell’s work’ supports ‘different cells have different proteins
for their functions’

0.04

C13→G16 ‘Proteins do the cell’s work’ supports ‘the more conserved DNA is between
species, the more important the gene product’

−0.02

C15→C26 ‘Protein structure and function depends on amino acids in the protein’
supports ‘changes to genes change protein functions to change traits’

−0.06

C15→ F5 ‘Protein structure and function depends on amino acids in the protein’
supports ‘alleles differ in sequence which affects proteins to give trait
variations, dominant and recessive relationships can be explained by
protein interactions’

0.02

C24→G24 ‘Changes to genes change proteins to change traits’ supports ‘DNA
changes can be beneficial, neutral, or harmful, and can change protein
structure/function’

0.03

C25→C15 ‘Changes to genes change amino acids in proteins’ supports ‘protein
structure and function depends on amino acids in the protein’

0.03

C26→ F4 ‘Changes to genes change protein functions to change traits’ supports
‘alleles differ in sequence which affects proteins to give trait variations’

−0.10

C26→H6 ‘Changes to genes change protein functions to change traits’ supports
‘environment can change genes which change proteins, or change gene
expression of proteins’

0.09**

D3→C22 ‘DNA tells cells to be different’ supports ‘changes to genes change cells’ 0.05
D3→ J1 ‘DNA tells cells to be different’ supports ‘gene expression is not regulated

or controlled, or does not change’
0.37***

D6→ J2 ‘Somatic cells have the same DNA to express different proteins’ supports
‘genes can be turned on during development’

0.08*

E1→ F2 ‘Organisms can only get traits of their parents’ supports ‘traits from parents
can mix or compete to give offspring traits’

0.00

E1→ I1 ‘Organisms can only get traits of their parents’ supports ‘a change of traits
can be passed down to offspring’

0.26***

E2→ F3 ‘Offspring get half of their DNA from each parent’ supports ‘organisms get
one allele per parent, and traits can be predicted’

0.05

E2→G12 ‘Offspring get half of their DNA from each parent’ supports ‘organisms
have different DNA’

0.03

E2→ I2 ‘Offspring get half of their DNA from each parent’ supports ‘DNAmutations
can be passed down to offspring’

0.01

E5→G25 ‘Chromosomes can swap sections increasing genetic variation’ supports
‘DNA changes lead to increased genetic variation and evolution’

0.03

F1→ E1 ‘Organisms have different versions of traits’ supports ‘organisms can only
get traits of their parents’

0.43***

F1→G22 ‘Organisms have different versions of traits’ supports ‘organisms within a
species look and function differently’

0.08*

F2→ I1 ‘Traits from parents can mix or compete to give offspring traits’ supports ‘a
change of traits can be passed down to offspring’

0.25***

G11→ E1 ‘Organisms have different traits or functions’ supports ‘organisms can only
get traits of their parents’

0.21***

G11→ F1 ‘Organisms have different traits or functions’ supports ‘organisms have
different versions of traits’

0.36***

(Continued )
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Results

Can we use path analysis to evaluate the extent to which data collected from
undergraduate biology students support the hypothesised progression web
model for proficient-level understanding of genetics as hypothesised by Todd
and Romine (2016)?

We found an RMSEA of 0.05 for the progression web model hypothesised by Figure 2,
indicating good fit to the data. However, we found that this model fits significantly
worse than the saturated model (χ2 = 2650.4, df = 1540, p << .001). Despite this, if we
take the ratio of the chi square to the degrees of freedom, we obtain a value of 1.7,
which is well below the value of 2 proposed by Ullman (2001) to indicate acceptable fit.
This corroborates the RMSEA in support of a good-fitting model. When comparing the
model in Figure 2 to the independence model, we calculate CFI and TLI values of 0.94,
an additional indicator of good fit (Bentler, 1990). These suggest collectively that the
data provide strong evidence in support of our hypothesised progression web (Figure 2).

What connections do introductory college biology students make between
related modern genetics concepts?

Standardised path coefficients for the progression web model are outlined in Figure 3. For
simplicity, only statistically significant path coefficients are shown with asterisks indicating

Table 1. Continued.
Link between
construct ideas Description of hypothesised link

Standardised path
coefficient

G11→G21 ‘Organisms have different traits or functions’ supports ‘species look and
function differently’

0.40***

G11→H2 ‘Organisms have different traits or functions’ supports ‘environment can
affect traits or functions’

0.04

G11→ I1 ‘Organisms have different traits or functions’ supports ‘a change of traits
can be passed down to offspring’

0.26***

G13→ F3 ‘Organisms have different DNA even within a species’ supports ‘organisms
get one allele per parent, and traits can be predicted’

0.05

G14→ E5 ‘Organisms within a species have both similar and different DNA’ supports
‘chromosomes can swap sections increasing genetic variation’

0.01

G14→ F3 ‘Organisms within a species have both similar and different DNA’ supports
‘organisms get one allele per parent, and traits can be predicted’

0.05

G21→H2 ‘Species look and function differently’ supports ‘environment can affect
traits or functions’

−0.06

G22→G13 ‘Organisms within a species look and function differently’ supports
‘organisms have different DNA even within a species’

0.03

G22→H2 ‘Organisms within a species look and function differently’ supports
‘environment can affect traits or functions’

0.06

G24→H5 ‘DNA changes can be beneficial, neutral, or harmful, and can change
protein structure/function’ supports ‘environment can change type and
amount of proteins that influence cell function’

0.02

H2→G23 ‘Environment can affect traits or functions’ supports ‘changes to an
organism can be beneficial or harmful’

0.00

J4→H6 ‘Gene expression can change at any point during one’s life’ supports
‘environment can change genes which change proteins, or change gene
expression of proteins’

−0.03

*p < .05.
**p < .01.
***p < .001.
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the degree of significance. Path coefficients for relationships between constructs are shown
in bold. Table 1 summarises all the hypothesised between construct relationships, describing
how one idea may support another idea and showing the associated path coefficient and sig-
nificance for that relationship. Of the 88 total hypothesised connections, 41 were between
constructs in the LP. Our analysis determined 10 (24.4%) of these connections were signifi-
cant at the p < .001 level, 1 (0.02%) was significant at the p < .01 level, and 3 (0.07%) were
significant at the p < .05 level (Figure 3 bold coefficients, Table 1).

All the connections between ideas in the same construct (i.e. B1→B2, B2→B3, etc.)
were found to be highly statistically significant (all have p < .001; Figure 3) and have rela-
tively large standardised values (all above 0.5 with the exception of F3→F4; Figure 3), indi-
cating that achievement of the higher levels in the construct depends directly on students’
achievement of the next lowest level. This result is not surprising as it is a direct result of
our Guttman coding scheme; however, it does provide additional evidence for the consist-
ency of items within each construct. Each construct describes increasingly sophisticated
learning performances in terms of levels for an idea in modern genetics; for example, con-
struct B describes the idea that genes code for proteins where level 1 is the idea that genes
are non-informational and level 6 is understanding how genes code for proteins including
the details of translation. While there has been a good amount of evidence for the ideas
within each construct being linked coming out of both qualitative (Todd & Kenyon,
2016) and Rasch (Todd & Romine, 2016; Todd et al., 2017) methodologies, this provides
further quantitative statistical evidence.

Figure 3. Standardised path coefficients of hypothesised LP connections. Significant standardised path
coefficients determined by path analysis are shown on the hypothesised connections. Connections
between ideas in the same construct are connected by lines, narrowing towards the more complex
idea (higher level). Arrows indicate connections between ideas in different constructs where arrow
directionality indicates ideas (arrow tail) that influence understanding of a more complex idea
(arrow head). Solid lines and arrows indicate the relationship is statistically significant using the full
model where *p < .05 level, **p < .01, ***p < .001. Grey dotted arrows with no standardised path coeffi-
cients indicate an insignificant path (p > .05).
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Using only the connections that were significant in our population of students (Table 1,
Figure 3), we saw that knowledge consisted of three different groups of inter-related con-
structs: (1) B, C2, and H; (2) D and J; and (3) E, F, G1, G2, and I. Construct C1 (proteins do
the work of the cell) had no significant connections to any other construct. The first two
groups deal with the molecular model of genetics, while the last group deals with the
meiotic and genetic models. How genes code for proteins (construct B) influenced under-
standing of how proteins connect genes and traits (construct C2) which influenced under-
standing of the highest level of construct H (how the environment can change genes or the
expression of genes). Similarly, how cells express different genes (construct D) influenced
the understanding that gene expression can change at any point (construct J). We saw the
lower levels of construct G1, G2, F, and E all influenced each other as all involved the idea
that organisms have different traits and functions. This idea then influenced the under-
standing that changes can be passed on to offspring (construct I, level 1). To summarise,
our data show that the molecular concepts (B, C2, D, H, J) and the meiotic/genetic (E, F,
G1, G2, I) concepts are separate clusters in our sample of students.

Discussion

Being able to show that the ideas within each construct are linked is important, and we
successfully demonstrated that all 47 of the connections within the constructs were
highly statistically significant; however we were most interested in determining if we
can use path analysis to inform connections between LP constructs. We were able to
demonstrate statistically significant connections between 14 (34.1%) of our hypothesised
relationships between constructs. We were not surprised to find that the magnitude of
statistically significant path coefficients between LP constructs (0.08–0.53) were generally
not as high as those within (0.24–0.96); it is reasonable to posit that while connections
between less advanced to more advanced ideas between constructs may be significant,
they will likely not be as strong as connections between increasingly advanced ideas
within constructs. While a significant connection provides evidence that knowledge of
the first concept influences achievement of the higher concept, an insignificant or very
small significant connection does not necessarily imply knowledge of the first concept
does not influence, or has little influence on, achievement of the second for all students
– it only suggests that the introductory biology students in this study, on average, did
not make such a connection which is a sign of novice understanding.

The data set we used for this analysis consisted of a heterogeneous population of stu-
dents in an introductory biology majors course where students ranged from essentially no
knowledge of genetics to a nearly proficient-level understanding (Todd & Romine, 2016),
despite the fact that the maximum learning performance in each construct represents an
understanding of genetics at the level of high school biology instruction. Given that we had
a wide range of knowledge and ability levels to test the proficient-level progression web, we
were not surprised for our analysis to show several hypothesised connections were insig-
nificant – it is expected that novices would not make as many connections between ideas
as proficient students (Todd & Romine, 2016), consistent with expert/novice frameworks
describing how experts view complex phenomena as more interconnected than novices
(e.g. Chi, Feltovich, & Glaser, 1981; Hmelo-Silver & Pfeffer, 2004; Petcovic & Libarkin,
2007). In this context of college genetics, our data show college students are able to
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make some connections between concepts, but do not demonstrate a proficient-level
understanding of how these genetic concepts are inter-related. An expert, such as the
course instructor, would likely have a much richer grasp of the degree of interconnected-
ness between these ideas. Future studies with a data set containing a larger portion of indi-
viduals that have near proficient-level understandings of genetics may provide a more
informative test of the validity of all of the hypothesised connections outlined in Figure
2, but we can still gain valuable information from this analysis in that it describes the
average cognitive structure of how students in an introductory biology class connect gen-
etics ideas.

Our data show that themolecular constructs (B, C2, D, H, J) and themeiotic/genetic (E,
F, G1, G2, I) concepts are separate clusters for our population of college students. This
indicates that students in our study did not understand how molecular concepts
support meiotic/genetic concepts (i.e. how amino acid sequences determine protein struc-
ture and function which helps explain how alleles that differ in amino acid sequences affect
protein structure and function to give trait variations and that dominant and recessive
relationships can be explained by these protein interactions, C15→F5). Students did
not understand the connections between molecular and meiotic/genetic ideas and see
them as separate unrelated topics within the domain of genetics. It is also interesting
that construct C1 (proteins do the work of the cell) had no significant connections to
other concepts, indicating that students in our study also did not understand how the
functions of proteins relate to cellular specialisation (C13→D4) or explain dominant
and recessive relationships (C15→F5), among others.

Important for instructional purposes, our analysis provides evidence that college stu-
dents can and do make connections between the different constructs or ideas in
modern genetics and that knowledge of some ideas (i.e. how genes code for proteins)
help understanding of other ideas (i.e. how proteins connect genes and traits). Thus,
these concepts should not be taught independently, but simultaneously – instruction
needs to highlight the connections between the concepts. Our data show that progressing
to high levels in the genetics LP involves students making connections between different
groups of ideas (molecular andmeiotic/genetic), and thus moving towards a more complex
and proficient-level integrated progression web of genetics understanding. The challenge
for instructors is to build on the knowledge and connections that students have, increasing
both content ideas and interconnectedness of these ideas at the same time. Thus we
suggest that genetics instructors should make these connections between ideas (Table 1)
explicit when teaching, highlighting how knowledge of certain topics supports the under-
standing of more complex topics. Our data show the average college student does an ade-
quate job in understanding how the molecular ideas relate to one another (i.e. B2→C21,
B3→C22, B5→C23, D3→ J1) and how the genetic/meiotic ideas relate to one another (i.e.
E1→ I1, F1→E1, G11→G21), or mainly connections between the lower levels of the con-
structs, but has difficulties understanding how processes that happen at the molecular level
influence patterns of inheritance and genetics (i.e. B5→G16, C15→F5, C24→G24), or the
connections between the higher levels of the constructs. Connections between the actions
of proteins and how they relate to patterns of inheritance should be made explicit when
teaching, highlighting how these concepts are interconnected, thus leading to a more pro-
ficient-level integrated web of genetics knowledge.
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Conclusion

In this study, we make the case for the necessity of creating progression webs from multi-
faceted LPs in order to test relationships between construct ideas and highlight the poten-
tial of path analysis in validating these complex networks of progressing ideas. Data based
on LP theories, including those explored in this study, conform to the assumptions of path
analysis nicely. Our analysis shows that this method can provide evidence for connections
both within and between LP constructs and provides evidence that many of the constructs
in a progression web are dependent upon each other. We were able to show that all con-
nections within concepts in a single construct and a little more than a third of our hypoth-
esised connections between concepts across constructs were statistically significant (p
< .05) with our heterogeneous group of students.

There are a few limitations to this method that we wish to discuss. Path analysis with
many connections requires a large sample size, hence we used our data collected with a het-
erogeneous population of college students (n = 316) at a single time point (Todd & Romine,
2016). A worthy goal for future research would be to measure a larger number of students
and partition them into groups by their LPA-MG measures. This would give a cross-sec-
tional look into how the connections between ideas outlined in Figure 2 develop with
ability level instead of an average snapshot of a diverse group as provided by this study.
It would also be of interest to follow the same group of students longitudinally to see
how connections between their ideas change as they learn. Amore homogeneous population
of students, especially at a time point after instruction, would likely have more significant
connections between concepts, aligning more with what we would expect from a profi-
cient-level understanding (Figure 2). On the other hand, our population of college students
had instruction during their introductory biology course covering these topics and the ‘pro-
ficient’ level of each concept was defined at the level of high school biology instruction. It was
therefore not unreasonable to expect that students would be able to achieve the proficient-
level learning performances on the LPA-MG assessment, thus providing evidence to support
or refute the hypothesised proficient-level connections. Similarly, the contingencies ident-
ified between constructs are dependent on the sample used for analysis. Based on our pre-
vious work (Todd & Romine, 2016), if data were collected on genetics novices, Figure 3
would look much more sparse and disconnected.

As LPs are being tested and revised continually in light of growing empirical evidence,
identifying the contingencies and relationships between related concepts in multi-faceted
LPs is important for modelling how students think, determining how knowledge of
simpler concepts scaffolds knowledge of more advanced concepts, and designing appropriate
classroom instruction to help students achieve proficient-level understanding of the domain.
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