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ABSTRACT
Crosscutting concepts such as scale, proportion, and quantity are
recognised by U.S. science standards as a potential vehicle for
students to integrate their scientific and mathematical knowledge;
yet, U.S. students and adults trail their international peers in scale
and measurement estimation. Culturally based knowledge of scale
such as measurement units may be built on evolutionarily-based
systems of number such as the approximate number system
(ANS), which processes approximate representations of numerical
magnitude. ANS is related to mathematical achievement in pre-
school and early elementary students, but there is little research
on ANS among older students or in science-related areas such as
scale. Here, we investigate the relationship between ANS precision
in public school U.S. seventh graders and their accuracy
estimating the length of standard units of measurement in SI and
U.S. customary units. We also explored the relationship between
ANS and science and mathematics achievement. Accuracy
estimating the metre was positively and significantly related to
ANS precision. Mathematics achievement, science achievement,
and accuracy estimating other units were not significantly related
to ANS. We thus suggest that ANS precision may be related to
mathematics understanding beyond arithmetic, beyond the early
school years, and to the crosscutting concepts of scale,
proportion, and quantity.
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National science standards suggest leveraging crosscutting concepts to teach science in a
way that not only unites science content, but also integrates other core STEM domains
such as engineering and mathematics (NGSS Lead States, 2013). One such crosscutting
concept is scale, proportion, and quantity, often called size and scale in the literature
(NGSS Lead States, 2013). Size refers to bulk or quantity, while scale refers to the
systems of measurement used to compare relative sizes (Magana, Brophy, & Bryan,
2012; Resnick, Davatzes, Newcombe, & Shipley, 2017). In addition to national science
standards, scale and measurement are recognised by U.S. mathematics education
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standards. ‘Measurement and data’ is one of the major areas emphasised by the Common
core state standards for mathematics for elementary school mathematics (National Gover-
nors Association Center for Best Practices, Council of Chief State School Officers
[NGACBP, CCSSO], 2010), and measurement is one of five content strands in the Prin-
ciples and standards for school mathematics (National Council of Teachers of Mathematics
[NCTM], 2000). There is a growing need to ensure that students have opportunities for
deep learning in science and mathematics to better prepare a scientifically and mathemat-
ically literate citizenry capable of making evidence-based decisions in the twenty-first
century.

There is a common assumption that a relationship exists between mathematics achieve-
ment and science achievement; yet, the degree to which learning science depends on math-
ematics or is framed by understanding and skills in mathematics has not been fully
delineated. The potential for scale to help students integrate their scientific and mathemat-
ical knowledge makes investigating scale particularly important as recent international
research has found that students and adults in the U.S. trail their international peers in
scale and measurement estimation (Delgado, 2013; Jones et al., 2013).

Formal systems of numerical thinking (e.g. mathematics) are culturally derived, yet evi-
dence exists of a relationship between culturally based, complex mathematics and evolu-
tionarily based, innate systems of number (Spelke, 2005). Research in behavioural
psychology and neuroscience indicates that mathematical ability is derived from the inter-
section of two innate core systems of number (Feigenson, Dehaene, & Spelke, 2004a; Fei-
genson, Libertus, & Halberda, 2013). One core system, referred to as the Exact Number
System (ENS) is designated for processing small, exact quantities. The second core
system, the approximate number systems (ANS), processes large, imprecise quantities.
In addition to behavioural experiments that highlight differences in the ANS and ENS
(e.g. Xu, 2003), brain imaging has shown distinct regions of the brain designated for
each system (Piazza & Izard, 2009). Furthermore, observations of both the ENS and the
ANS in infants and non-human animal species provide evidence that these systems are
evolutionarily based rather than culturally acquired (Feigenson et al., 2013; Geary, 1995).

Researchers have argued that these systems are both linked to learning in mathematics.
One explanation is that a reciprocal relationship exists between the ENS and the ANS (Lib-
ertus, 2015). For example, Halberda and colleagues (Libertus, Odic, Feigenson, & Hal-
berda, 2016) found that strengthening students’ ANS acuity improved performance on
mathematics assessments involving exact numerical calculations, and Castronovo and
Göbel (2012) found that strengthening the ENS led to improved ANS acuity. The specific
mechanisms underlying the relationship between the ENS, the ANS, and learning math-
ematics and science, however, remain unclear and are in need of further research. A robust
field of research has emerged to investigate the relationship that innate systems of number,
specifically the ANS, have on learning mathematics in both young children and adults, but
less research has been done on older children and even less is known about the relation-
ship between the ANS and concepts in science.

The crosscutting concept of size and scale provides an opportunity to investigate how
innate number sense can relate to achievement in science. Size refers to the ability to
understand magnitude or quantity of objects, a process that engages the ANS for large
numbers (i.e. numbers greater than four). Quantity estimation relies on the ANS to esti-
mate quantity. Similarly, the ANS is also engaged when reasoning about scale because
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scales are systems of measurement that allow for the comparison of relative sizes, and
anytime we map a scale to a number (e.g. 10 inches) the ANS may be involved. Thus,
reasoning about concepts of scale may leverage the ANS to discern between two distinct
quantities.

Measurement systems and measurement estimation are often used as a means of index-
ing individuals’ understanding of size and scale (Jones & Taylor, 2009). The need for
measurement concepts and tools is common for people regardless of location, but the
units of measurement that are used vary by culture. In everyday life, the U.S. relies on
the U.S. customary (USC) system of units, derived from the English system, while most
other countries and scientists worldwide rely on the SI system derived from the metric
system (Central Intelligence Agency, 2012). The SI system uses predictable factors across
unit prefixes (e.g. there are 1000 nanometres (nm) in a micrometre (μm) and 1000 μm in
a millimetre), while the USC system is highly idiosyncratic (e.g. 12 inches in a foot, 3 feet
in a yard, and 1760 yards in a mile). Experts tend to create new units that are more con-
venient and are tied to context (e.g. the light year or astronomical unit) (Jones &
Taylor,2009). This process of ‘unitizing’ underlies conceptual understanding of spatial
scales (Tretter, Jones, & Minogue, 2006). Novices also rely on units, spontaneously asking
about units smaller than the millimetre when thinking about objects too small to see with
the naked eye (Delgado, 2009, 2010). Recent research found significant cross-cultural differ-
ences on tasks that assessed accuracy of size estimation across SI-native and USC-native tea-
chers (Jones et al., 2013). Other research with students showed that students who grew up
using the SI system for everyday life were more accurate in estimating the length of a metre
than their USC-native peers at the same school (Delgado, 2013). There is thus empirical evi-
dence that culturally based knowledge is involved in knowledge of units.

It is possible that our cognition about units of measurement might be built by co-opting
the ANS, in which case, there should be a measurable relationship between ANS acuity
and accuracy of estimation of the length of standard units. If our knowledge of units is
instead built on other biologically primary abilities, such as those that deal with space
or with exact numbers, then measures of ANS acuity and knowledge of units may be unre-
lated. If knowledge of units does not depend strongly on any biologically primary abilities,
then measures of ANS acuity and units may also be unrelated.

This study, with participants from a U.S. public school seventh-grade classroom,
explored the relationship between ANS acuity and three measures: an assessment of
knowledge of standard units of measurement in the SI and USC systems, a state standar-
dised mathematics test, and a state standardised science test.

The goal here is to bring attention to a promising theoretical framework that can inform
science education research and practice, and to present findings on whether one evolutiona-
rily based ability is related to concepts of science and mathematic scale at the middle school
level. By examining students’ knowledge of standard units of measurement, we begin to
explore the relationship between the ANS and the crosscutting concept of scale, proportion,
and quantity (National Research Council [NRC], 2012). Crosscutting concepts have repeat-
edly been identified as critical to understanding science and engineering (NGSS Lead States,
2013). Here, we call for more dialogue and research to begin to unravel the complexities
inherent in understanding and applying concepts of size and scale.
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Theoretical framework

Evolutionarily based abilities

Evolutionarily based abilities have been termed ‘biologically primary’ and are universally
acquired even in the absence of external motivation or instruction; they are found in all
cultures, plausibly provide an advantage in survival and/or reproduction, and can be
traced from related species to humans (Geary, 1995). They include understanding and
producing spoken language (Pinker, 1995), and the understanding of space, number,
and the behaviour of physical objects and people (Spelke, 1994). These core areas of
knowledge relate to essential functions such as interacting with the social and physical
environment, navigating the surroundings, and keeping track of dependents, resources,
or predators. These areas of knowledge do not depend on individual learning or cultural
transmission, as shown by their detection in very young babies; the presence of these abil-
ities or analogous ones in non-human animals suggests evolutionary roots.

There are several evolutionarily based systems of numerical and magnitude represen-
tations which may be relevant for scale, proportion, and quantity representation, including
the ANS, object tracking, representations of small numbers of individual items, and
approximate area and length representations (Cantlon, Platt, & Brannon, 2009; Feigenson,
2007; Feigenson, Dehaene, & Spelke, 2004b; Lourenco, Bonny, Fernandez, & Rao, 2012;
McCrink & Wynn, 2004). Among these evolutionarily based abilities, only the ANS has
thus far been shown to relate to mathematics learning (Gilmore, McCarthy, & Spelke,
2010; Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Halberda, Mazzocco, & Feigen-
son, 2008; Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, 2012; Lyons
& Beilock, 2011; Mazzocco, Feigenson, & Halberda, 2011a, 2011b), while some recent evi-
dence suggests that area estimation may relate to geometry skill (Bonny & Lourenco, 2015;
Lauer & Lourenco, 2016; Lourenco et al., 2012). We have chosen to focus on individual
differences in the ANS in the current study, in part because assessment of ANS acuity
is a well-developed and well-documented field of study (e.g. Halberda et al., 2008).
However, consistent with the suggestion that multiple evolutionarily based and culturally
based abilities may be combined when mastering complex reasoning tasks (Paas & Sweller,
2012), we believe that future work might expand to investigate other evolutionarily based
abilities. Such research would be greatly aided if assessment tools were developed for
measuring individual differences in these other abilities across the lifespan – as has
been successfully demonstrated for the ANS.

The ANS, which is the focus of our study, is supported by a neuronal network located in
the horizontal segment of the intraparietal sulcus (Cappelletti, Muggleton, & Walsh, 2009;
Castelli, Glaser, & Butterworth, 2006; Nieder & Dehaene, 2009). This system processes
approximate representations of numerical magnitude allowing humans and other
animals to rapidly judge which of two collections of objects is greater in number
without explicit verbal counting (e.g. ‘Do we need more chairs to accommodate all of
our guests?’), and can allow us to generate noisy (i.e. variable) estimates of numerosity
(e.g. ‘About how many marbles are in this jar?’). In the natural environment, the ANS
can help animals determine which blackberry bush has more berries, or which herd of
prey is larger. The representations of the ANS appear to be functional in infants shortly
after birth (Izard, Sann, Spelke, & Streri, 2009). These representations undergo a great
deal of refinement and improvement throughout development (Halberda & Feigenson,
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2008) and improvements continue throughout the school years with ANS representations
attaining their final best precision at approximately 30 years of age (Halberda et al., 2012).
This protracted developmental improvement highlights the possible relevance of ANS rep-
resentations for learning mathematics and other skills.

There is evidence that the ANS is related to mathematics learning. Recent work reveals
that ANS acuity at age three years predicts mathematics achievement at age seven (Liber-
tus et al., 2011; Mazzocco et al., 2011a) and that children with a mathematics learning dis-
ability have significantly reduced precision in their ANS (Mazzocco, Feigenson, &
Halberda, 2011b; Piazza et al., 2010). Neuroimaging studies have shown that the proces-
sing of spatial extension (one-dimensional length) and quantity have similar neural bases
(Cohen Kadosh et al., 2005; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Pinel,
Piazza, Le Bihan, & Dehaene, 2004). Since humans may ‘co-opt’ evolutionarily based
systems for other uses (Geary, 1995), our understanding of length might be built on the
evolutionarily based systems for quantity.

While a link between ANS acuity and quantitative reasoning has been empirically
established, the relationship of ANS acuity to estimation of continuous quantities such
as length, weight, or volume is not known. There is both evidence suggestive of a link
(e.g. from neural data, Pinel et al., 2004) and reasons for caution (e.g. from work on geo-
metry, Lourenco et al., 2012). But, most relatedly, M. Gail Jones (2012) has speculated that
there may be a relationship between the ANS and an individual’s concepts of size and
scale. The present study is to our knowledge the first study investigating the relationship
between ANS acuity and concepts of scale at any age, and between ANS acuity and science
achievement in middle school.

Culturally based abilities

Culturally based abilities have been termed ‘biologically secondary’ and are not universally
acquired (Geary, 1995). Their development depends on cultural transmission such as
formal schooling, and may require external motivation (Genovese, 2003). Abilities such
as solving calculus problems, writing, or identifying medicinal plants depend on culturally
developed systems of knowledge or tools. Cultural tools are important for thinking and
learning (Vygotsky, 1978, 1985). For instance, measurement involves placing identical
units across the object to be measured, in a straight line, end to end, without gaps or over-
laps, and then summing them; rulers – a cultural tool – do this for us automatically
(Lehrer, 2003). As Pea noted, ‘intelligence is often distributed by off-loading what could
be elaborate and error-prone mental reasoning processes as action constraints of either
the physical or symbolic environments’ (1988, p. 48). For example, rulers simply do not
allow the use of units of different sizes, nor do they permit gaps or overlaps between units.

Differences among cultural tools have been shown to impact the development of
knowledge of learners. Some languages, like Mandarin, have very regular number words
(eleven is ‘ten-one’ and twenty-two is ‘two-ten-two’) while others, like English, have
number words that are less transparent in regard to the decimal nature of our numbering
system (Delgado, 2013; Miller & Stigler, 1987; NRC, 2009). Research shows that Chinese
children can count to higher numbers than their American peers of the same age (Miller &
Stigler, 1987). The existence of abilities that emerge at different times in different cultures
is a hallmark of culturally based abilities (Geary, 1995). Other cultures have only a few
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number words (e.g. one, two, and five –Harris, 1987) and combine these to produce other
numbers.

Recent international research on teachers’ and students’ accuracy on scale and
measurement tasks showed that there were advantages on some scale and measurement
tasks for learners in countries that used the predictable, decimal SI system for everyday
life, compared to their American counterparts, who employ the idiosyncratic USC
system of units (Delgado, 2013; Jones et al., 2013). Differences in culturally based abilities
across cultures have thus been demonstrated for tasks related to the crosscutting concept
of scale, proportion, and quantity.

Research objectives

In seeking to explore the relationship between the ANS and scale, proportion, and quan-
tity, the following research questions guide our work:

1) How are scores for mathematics and science achievement related to the evolutionarily
based ANS, if at all?

2) How is the accuracy of estimation of various SI and USC measurement units related to
the ANS, if at all?

Methods

Participants

The participants were 30 seventh-grade students from a public school located in the south-
eastern part of the United States. All participants were 12 years old except for one 11–year-
old. The school is a K-12 laboratory school on the campus of a public university, with total
enrolment of around 500. Students are selected through a lottery each spring to fill vacant
spots. There is one class of students in grades K-6. At the seventh-grade level, a new group
of 25 students is added to the class of 25 rising sixth-grade students for a total of 50 seventh
graders. Thirteen per cent of the students at the school qualified for free or reduced lunch
and the racial/ethnic make-up of the participants is shown in Table 1. Students were all
volunteers who were invited to take part in a study of students’ concepts of scale and
measurement.

The school follows the state curriculum standards for all subjects; the study was con-
ducted prior to the state’s adoption of Common Core Standards. The math curricula
for grades 6 and 7 at the time of the study included five major categories: mathematical
processes; number and operations; algebra; geometry, and measurement; and data analy-
sis, statistics, and probability. The sixth-grade science curriculum covers seven major

Table 1. Demographic characteristics of participants.
Male Female Total

White 6 21 27
Black or African-American 0 2 2
Native Hawaiian or Pacific Islander 1 0 1
Total 7 23 30
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topics: inquiry; technology and engineering; interdependence; the universe; the atmos-
phere; energy; and forces in nature. In seventh-grade science, there are also seven
topics: inquiry; technology and engineering; cells; flow of matter and energy; heredity;
the earth; and motion. The data were collected during the final week of the school year,
so students would have been exposed to the sixth- and seventh-grade curricular topics
listed above.

Of 48 students in the seventh grade, 30 participated. Their average scores on the state
and math standardised achievement tests were very similar to the overall seventh-grade
test scores for the school; by category, their scores varied from 0.3% lower to 3% higher.

Using the publicly available aggregated reports for grades 3–8, the lab school had higher
scores on the state standardised tests for science and math than the district, which in turn
had higher test scores than the state average. Data for seventh-grade tests also show the
school outperforming the state, although not always the district (see Tables 2 and 3).
Thus, the setting where this study was conducted was privileged in terms of standardised
test scores and had low poverty indicators. Nevertheless, as a pioneering study into ANS
and scale, the results are informative, even if not representative of the broader population.
Future research should be conducted using a greater diversity of achievement levels, socio-
economic status, and racial/ethnic diversity.

Instruments and variables

We measured students’ ANS precision with the test described below, and accuracy in esti-
mating the millimetre (mm), centimetre (cm), metre (m), inch (in), and foot (ft). The most
recent mathematics and science achievement scores from the state standardised test were
obtained from the school system (these were from the previous school year).

Approximate number system
Students’ ANS acuity/precision was assessed with a computer-delivered test that asked
respondents individually to quickly judge which of two collections had more objects
(http://www.panamath.org/) (Halberda et al., 2008, 2012); see Figure 1. The collections

Table 2. Seventh-grade mathematics standardised test scores for participants, school,
district, and state.

Math
processes

Number &
operations Algebra

Geometry &
measurement

Data analysis, statistics, &
probability

Participants 73 67 53 70 54
School 71 66 52 70 52
District 71 67 53 69 54
State 63 61 47 61 49

Table 3. Seventh-grade science standardised test scores for participants, school, district, and state.
Cells, flow of matter & energy Earth Motion Inquiry and technology & engineering Heredity

Participants 73 72 77 71 77
School 72 72 76 70 77
District 64 65 71 67 69
State 61 64 68 65 68
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on the test were balanced for other variables that might influence the decision: total area
covered by the objects and individual item size. This type of numerical comparison is
easy with large ratio differences (e.g. 7 blue dots vs. 14 yellow dots), but becomes more dif-
ficult when the ratio of blue to yellow dots is close (e.g. 8 blue vs. 7 yellow) (Dehaene, 1992).
By varying the ratio of blue and yellow dots across trials, it is possible to determine the pre-
cision of an individual’s ANS. The representations of the ANS are thought to be an approxi-
mate mental number line where each numerosity is represented by a ‘noisy’, that is,
variable, Gaussian curve centred on the number (Feigenson et al., 2004a). These curves
overlap each other such that numerical discrimination can be more or less difficult depend-
ing on the ratio and on an individual’s internal precision. This precision can be indexed by
a Weber fraction (w) and an average response time (RT) on the ANS dots test (Halberda
et al., 2008, 2012; Halberda & Feigenson, 2008; Libertus et al., 2011, 2012; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004; Pica, Lemer, Izard, & Dehaene, 2004). The Weber frac-
tion w is an estimate of the internal noise, or confusability, of an individual’s ANS number
representations, and RT is the amount of time an individual takes to make their decision.
Previous research has demonstrated that a person with a more precise ANS will make faster
and more accurate number decisions on the ANS dots test, whereas a person with a
‘noisier’, more variable ANS will perform more poorly and take a longer time to answer,
often feeling that they are unsure whether there were more blue or more yellow dots (Hal-
berda et al., 2012). In the present work, we combine estimates of w and RT for each student
by z-scoring each of these variables and taking the average z-score (named ‘ANS precision’)
such that lower z-scores correspond to lower w (i.e. higher precision) and lower RT

Figure 1. Screenshot of the Panamath computer-delivered test for ANS. The images appear on the
screen for 600 milliseconds.
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(i.e. faster responding). As z-scored variables have a mean of zero and a standard deviation
of 1, negative values of ANS precision indicate better ANS scores than positive values. This
procedure also controls for speed–accuracy trade-offs that might exist in performance (Fei-
genson et al., 2013).

One outlier for w was removed from the analyses. The distribution of the remaining
data points was normal according to the Kolmogorov–Smirnov test (p = .200). The
measure of ANS, ANS precision, was thus interval-level and normally distributed.

Accuracy in estimation of units
We measured the accuracy of student estimates of the length of three everyday SI units
(mm, cm, and m) and two USC units (in, ft). Students were provided with a long, thin
strip of paper with approximate dimensions 6 cm wide by 2 m long, and asked to mark
the endpoint of the five units, starting from a predetermined end. The length of each esti-
mate was then measured in one of two ways. For the smaller estimates, the small end of the
strip was placed next to a ruler with millimetre markings, scanned and saved in pdf format.
Each estimate was then measured by an undergraduate assistant using Adobe’s Measure-
ment Tool (see Figure 2). By expanding the scan (usually to 800%), the lengths of unit esti-
mations on the scans were determined in millimetres with precision nominally down to
0.01 mm. The undergraduate assistant also measured a 10 cm expanse on the ruler, in
order to compensate for any deviations from true scale on the scans. We then divided
each length of unit estimation measured from the scan by one-hundredth of the 10 cm
span measured from the scan in order to arrive at the actual size of the estimation. This
was possible for estimations of less than around 25 cm in length, due to the size of the
scanner bed. For longer estimations, the fourth author measured them using a ruler.

The per cent error for each measurement unit estimation was then calculated by
finding the absolute value of the difference between the estimate and the unit, then

Figure 2. Example measurement of estimation of units using Adobe’s Measurement Tool (student C7).
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dividing by the unit and multiplying by 100. Accuracy estimating the metre and the foot
were normal according to the Kolmogorov–Smirnov test (p = .076 and .055, respect-
ively), while accuracy estimating millimetre, centimetre, and inch were non-normal.
As described below, the per cent error was used for correlation tests. However, we
also recoded these variables into binary variables using a 25% threshold. We used
25% as a threshold in keeping with previous studies (Delgado, 2013; Swan & Jones,
1980). This threshold meant that estimates between 75 and 125 cm in length were con-
sidered accurate for the metre estimation task, for example. The resulting variable was
dichotomous and ordinal. These dichotomous variables were used in t-tests to determine
effect size, as described below.

State standardised test scores
The state standardised test scores for mathematics and science were used as a measure of
achievement in the two subject areas. Each of the tests was given on one day in the course
of a four-day testing schedule of language arts, math, science, and social studies. The
assessments were paper-and-pencil tests composed of two parts for each subject area.
Each part contained approximately 30 multiple-choice questions and students had
approximately 45 minutes to complete it. The mathematics test included five categories
of questions: mathematical processes; number and operations; algebra; geometry and
measurement; and data analysis, statistics, and probability. Students were provided with
a paper ruler and calculator to use during the math test. The science test also included
five categories: inquiry and technology & engineering; cells, flow of matter & energy; her-
edity; the Earth; and motion.

For the participants, most of the categories and overall scores in the state standardised
mathematics and science tests were normally distributed according to the Kolmogorov–
Smirnov test, while the Science Inquiry and Heredity categories and the Mathematics
Algebra category were non-normally distributed.

Data analysis

The relationship between ANS precision, on the one hand, and the state standardised test
categories and overall score, on the other, was investigated using Pearson correlations for
the normally distributed test scores, and Spearman non-parametric correlations for the
non-normally distributed categories.

The relationship between ANS precision and accuracy in estimating each of the five
units was investigated in two ways. First, we used correlations to test for the relationship
between the variables as a whole, using Pearson correlations for the normally distributed
metre and foot and Spearman non-parametric correlations for the non-normally distrib-
uted inch, millimetre, and centimetre. Second, we compared the values of ANS precision
for the students with accuracy above and below the 25% threshold, using independent-
sample t-tests for the normally distributed variables and Wilcoxon–Mann–Whitney
tests for the non-normally distributed ones. We also calculated effect sizes for statistically
significant results, using the pooled standard deviation (i.e. the square root of the average
of the squares of the standard deviations of both groups). In order to compensate for mul-
tiple comparisons (between ANS and the five units), p-values were adjusted using the Bon-
ferroni technique. We used these two analyses in order to be able to compare to previous
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findings in the literature and calculate effect sizes, using the dichotomous 25% threshold;
and to get a better feel for the relationship between the continuous variables, using the cor-
relations. The latter study compensates for the rather arbitrary nature of the 25%
threshold, and provides a more robust measure of the relationship between ANS precision
and accuracy in measurement estimation.

Results

Research question 1: relationship between ANS precision and state standardised
test

None of the correlations between ANS precision and mathematics and science achieve-
ment state standardised test scores by categories and overall was statistically significant,
for either mathematics or science. The correlations were all negative in value (better
ANS precision – represented by lower values – is associated with higher test scores)
and weak in magnitude (see Tables 4 and 5).

Research question 2: relationship between ANS precision and accuracy of
measurement unit estimation

The accuracy of students’ estimations of each measurement unit and the relationship
between ANS precision and each measurement unit are reported herein. The SI units
were more difficult for students to accurately estimate within a 25% threshold than the
USC units. The SI units mm, cm, and m were accurately estimated by 5 out of 30
(17%), 9 out of 30 (30%), and 10 out of 29 (35%) of the students, respectively. In contrast,
the USC units inch and foot were accurately estimated by 19 out of 28 (68%) and 17 out of
29 (59)% of the students, respectively.

Only the per cent error in estimation of the metre was significantly correlated to ANS
precision. The accuracy in estimating a metre was correlated to ANS precision at a stat-
istically significant level (p = .007) and a value of 0.489 for a strong correlation (students

Table 4. Correlations between ANS precision and mathematics standardised test scores (N = 29).
Total
Math
Score

Math
Processes

Number &
Operations Algebraa

Geometry &
Measurement

Data Analysis,
Statistics, &
Probability

Correlation −.227 −.208 −.250 −.125 −.223 −.227
Significance
(2-tailed)

.237 .278 .190 .517 .245 .236

aSpearman’s non-parametric correlation (all others are Pearson correlations)

Table 5. Correlations between ANS precision and science standardised test scores (N = 29).
Total science

score
Cells, flow of matter

& energy Earth Motion
Inquiry and technology &

engineeringa Hereditya

Pearson
correlation

−.236 −.162 −.335 −.294 −.196 −.296

Significance
(2-tailed)

.217 .401 .076 .122 .309 .119

aSpearman’s non-parametric correlation (all others are Pearson correlations).
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with better ANS precision – represented by a lower number – were better able to accu-
rately estimate the metre – represented by a lower per cent error). Using the Bonferroni
procedure to account for multiple comparisons, we compared this p-value to the standard
p-value of .05 divided by the number of comparisons (5), or .01, finding it statistically sig-
nificant (because .007 < .01).

The independent samples t-test with the variables for unit estimation dichotomised by
the 25% error threshold yielded similar results: the group that accurately estimated the
metre had a mean ANS precision of −0.45 while the group with inaccurate estimates
had a mean precision of 0.19. The difference is statistically significant with a p-value of
.005 (with equal variances assumed, as per Levene’s test), which is lower than the Bonfer-
roni-adjusted value of .01. The difference in ANS precision between students who were
able to estimate the metre accurately and those who were not was 1.246 standard deviation
units, for a large effect size. The t-test for accuracy estimating the foot and Wilcoxon–
Mann–Whitney tests for accuracy estimating the millimetre, centimetre, and inch were
not statistically significant.

Discussion

In relation to RQ1, concerning the relationship between ANS and state standardised test
scores, the present results contrast with prior research finding statistically significant cor-
relations between ANS and mathematical achievement in early elementary. The trend in
the results – for a relationship between basic number sense and more formal measurement
knowledge – is in the spirit of the prior research which has found a relationship between
basic number sense and more formal math ability – but note that this prior connection for
math remains open for continued study both because of the variety of ages yet to be
explored and the needed standardisation of the math abilities which participate in this
relationship. The lack of statistical significance is likely due in part to low power from
the small number of participants. Future research with a larger sample size for greater
power should be conducted to further explore the relationship between ANS acuity and
achievement in middle school.

In relation to RQ2, it is interesting that there are differences by ANS precision in the
estimation of the metre but not the other units, because cultural differences have also
shown up in estimating the metre but not other units: students who grew up using the
SI system for everyday life were significantly more accurate in estimating the length of
a metre than their USC-native peers at the same school but not in estimating a millimetre,
centimetre, inch, or foot (Delgado, 2013). These findings must be interpreted with caution
because they stem from different studies, yet they are congruent with the idea that both
evolutionarily based and culturally based abilities are at play in learning about some
units of measurement. This would support Paas and Sweller’s proposal that both types
of abilities are involved in school learning (2012).

This study used a convenience sample with voluntary participation, which may have
limited the generalisability of the results. The lab school setting indicates that our partici-
pants had applied to the lottery for admission, and this may indicate a greater interest in
education on behalf of the students or their parents, or other systematic differences with
typical public school students. In addition, the participants were mainly White, the school
has low poverty indicators, and the school has higher state results than the district or state.
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Nevertheless, their ANS acuity did not seem to be different from the typical 12-year-old
student. While large-scale cross-sectional studies of w and RT have not yet been carried
out and there are therefore no standardised estimates of these measures, the mean w
for the present group of 12-year-olds (w = 0.19) is slightly better than that observed in
a sample of 200 10- to 14-year-olds who were part of a large Internet-based study (w =
0.3), while the mean RT for the present group (RT = 957 ms) is slightly slower than the
Internet sample (RT = 735 ms) (Internet sample published in Halberda et al. (2012).
Thus, values for w and RT for the present sample are similar to what has been reported
before. The Internet study resulted in slightly faster RT and slightly less accurate respond-
ing; since both measures were combined into the ANS precision measure used in this
study, it appears that the students in this study were typical of their peers. As for the volun-
tary nature of participation in the study among the seventh-grade students at the lab
school, their state test scores suggest that the participants were not systematically different
from their peers. Gender composition was uneven, with 23 female and 7 male participants.
However, previous studies have not reported systematic differences in w and RT in girls
versus boys. Large cross-sectional studies would be valuable to further investigate these
issues.

Implications and future directions

Theoretical implications

This study contributes to the debate on the nature of knowledge that has been ongoing
for a decade. It has been suggested that, ‘many skills may consist of a combination of
primary and secondary knowledge and so we may be dealing more with a continuum
than a dichotomy’ (Paas & Sweller, 2012, p. 40). The findings reported here, while
exploratory, align with this theory, as the accuracy in estimating the length of a metre
correlates to ANS precision, while previous research found that it varies across cultural
groups (Delgado, 2013; Jones et al., 2013). One could speculate that skills such as
estimation of length that have strong relationships to critical human activities and
historically would have been essential to survival, would be related to primary, evol-
utionary-based knowledge.

This study also adds to the research base on evolutionarily based knowledge by
showing that middle school standardised test scores for mathematics do not correlate
with ANS precision at a statistically significant level, although trends are in the same
direction. It also showed that the estimation of some SI units correlates with ANS pre-
cision – the first finding for the ANS’ possible influence on learning that pertains to
science.

Educational implications

Currently, math and science education standards recommend measurement activities
using non-standard units before introducing standard units of length starting in the
second grade (NCTM, 2000; NGACBP, CCSSO, 2010) or mid-elementary (NRC, 2012).
Given that accuracy in estimating some standard units (the metre) is correlated to a bio-
logically primary ability (ANS precision), it is worth exploring whether the introduction of
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standard units can begin earlier, perhaps using discovery methods or activities that are
specifically aimed at mobilising the ANS. For instance, learning to visualise a line or
length as a collection of equal-sized components in order to estimate its size or to
compare it to another line might rely on the ANS; if those components are standard
rather than invented units, then the activities aimed at building the culturally based knowl-
edge of measurement units and length would be more explicitly based on the evolutiona-
rily based ANS.

Future research

Additional studies are needed that can unravel which abilities are biologically based and
which emerge in cultural contexts. But even more important is understanding the con-
ditions under which an individual uses biologically primary abilities in conjunction
with secondary abilities to accomplish learning tasks. Other areas that have yet to be
explored in depth include the intersection of sets of evolutionarily based abilities. For
example, spatial visualisation is likely involved in the recall of objects in terms of body
lengths, as used in previous research by the authors (Delgado, 2013; Tretter, Jones, &
Minogue, 2006; Tretter, Jones, Andre, Negishi, & Minogue, 2006). Spatial visualisation,
according to Geary (1995), may have evolved as part of the development of navigation
skills. Furthermore, Geary has suggested that spatial visualisation is co-opted and used
as part of algebraic problem-solving.

The goal of this paper has been to bring the theoretical framework of biologically
primary and secondary abilities to the attention of the science education community,
and to present findings that are consistent with a mechanism where both types of knowl-
edge play a role in school learning. We invite other researchers to explore whether the
topics and concepts they investigate build on these two different types of ability, and to
design studies to further examine how reasoning about the crosscutting concept of size
and scale develops, considering that it may involve the co-opting of multiple primary
systems and a rich interplay with secondary abilities.
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