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ABSTRACT: An underlying goal in most chemistry curricula is
to enable students to think like chemists, yet there is much
evidence to suggest that students can learn to solve problems
without thinking conceptually like a chemist. There are few tools,
however, that assess whether students are learning to think like
Ph.D. faculty, putative experts in the field. Here, we present a
card-sorting task that probes how individuals organize information
about problems in chemistry. Chemistry faculty tend to organize
around “deep” features centered on fundamental ideas in
chemistry while novices tend to organize around “surface”
features such as problem presentation or specific vocabulary.
We used established statistical techniques from card-sorting tasks
in other fields and introduce a new quantitative measure that
compares individual performance on the sorting task to faculty and novices that is hypothesis-independent. Initial results indicate
that the card-sorting task is effective at distinguishing between populations of faculty and novices in chemistry and can be used to
track progress toward more expert-like thinking over time through a chemistry education program.
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A goal of many chemistry curricula is to train students to
think like chemists. There is, however, much evidence that

students can learn to solve specific sets of problems in
chemistry without developing a fundamental understanding of
the underlying concepts.1,2 This lack of conceptual under-
standing and the associated alternative conceptions often
persist through and beyond undergraduate training.3 Despite
this goal of preparing chemistry students to think conceptually
like experts in the field, there are few assessment tools to probe
this type of growth.
Some of the existing tools for examining conceptual

knowledge in chemistry include the Chemistry Concept
Inventory,4 the ChemQuery5 system, and concept mapping.6,7

Concept Inventories are effective in investigating alternate
conceptions but do not ask the question of whether students
are developing an ability to organize information like an expert
in the field. More open-ended approaches, like interviews and
the ChemQuery system, give a richer picture of conceptual
connections, but are relatively complicated to implement. A
categorization task is a complementary tool to instruments like
concept inventories where the emphasis is on measuring
organization of content knowledge.
In cognitive psychology, expertise in a field implies not only a

larger body of knowledge but also that the information is better

organized and allows an individual to perform better on
domain-specific tasks.8 Many researchers are interested in how
to quantify the complexity of sophistication present in the
chemical thinking of experts as well as in developing
frameworks for the development of expert-like thinking. As
Stains and Talanquer have pointed out, expertise is not
necessarily developed in a linear fashion with academic
training.9 Consequently, Sevian and Talanquer have suggested
that learning progressions in chemistry should not only develop
disciplinary knowledge and skills, but also focus on cross-
cutting disciplinary concepts and assessment of conceptual
sophistication.10 The Perspectives of Chemists Framework also
articulates that scientific reasoning with domain knowledge
should be emphasized.5 All of this suggests that conceptual
expertise requires sophisticated reasoning and that assessments
that focus on isolated concepts are insufficient for assessing
expert-like thinking in chemistry.
Although measuring the ability of individuals to answer

questions or solve problems about specific concepts may
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require better organization of domain-specific knowledge, these
types of tasks do not directly measure that organization.
Categorization tasks can provide insight into the knowledge
organization component of expertise. A seminal categorization
task in physics education by Chi et al. asked two groups with
different levels of training in physics to sort physics problems
based on similarity of solution.11 The group of doctoral
students, which the authors termed experts, tended to sort the
problems based on underlying conceptual features in physics,
or “deep features.” A group of undergraduates with limited
training in physics, termed novices, tended to sort by more
superficial features related to the presentation of the problem,
or “surface features.” The use of surface and deep feature
theoretical frameworks by novices and experts has been
identified in other fields in the physical sciences.9,12

The approach taken by Chi et al. has appeared in a variety of
card-sorting tasks used in psychology and has been developed
for a number of different applications in other fields.13 In
addition to the work described above, there have been several
card-sorting tasks developed for use in physics education
research.14−17 In biology, a card sorting task has been
developed that uses hypothesized conceptual frameworks for
novices and experts to measure conceptual expertise.18 In
chemistry, sorting tasks have been used to examine how novice
and expert populations organize items from chemistry,
emphasizing differences between multimedia and chemistry-
based theoretical frameworks.19 Our approach builds on this
but differs in some key ways: our hypothesized deep and
surface feature theoretical frameworks are both tied to
chemistry content, we use and introduce several quantitative
methods for examining differences in populations, and we have
a substantially larger population of participants.
Building on the methodology of Smith et al.,18 we have

developed a card-sorting task for use in chemistry to measure
differences in conceptual expertise in populations with varying
degrees of chemistry training. Here, we introduce a set of
methods for using a card-sorting task for measuring conceptual
expertise in chemistry. Specifically, we aim to address the
following research questions:

1. Can a simple card sorting exercise distinguish between
populations of novices and putative experts in chemistry?

2. Is there an effective way to measure how expert-like an
individual card-sorting result is without measuring
against an experimenter’s expectation of how experts
will organize information?

3. What can the sorting task tell us about the development
of expert-like thinking through a chemistry education
curriculum as a tool for program assessment?

■ METHODS

Building the Cards

Following the model described by Smith et al.,18 we designed a
deck of 16 chemistry question cards to use as the basis of our
sorting activity. We identified four categories of hypothesized
surface chemistry features (reactions, acid/base, molecules,
energy) and four categories of hypothesized deep chemistry
features (structure/function, kinetics, thermodynamics, equili-
brium). Figure 1A shows an example that was designed with the
surface feature “Reactions” and the deep feature “Equilibrium”.
The set of cards was designed such that each card contained

one hypothesized surface feature and one hypothesized deep
feature (see Figure 1B). The questions were open-ended,

spanned traditional subdisciplines of chemistry, were presented
with multiple representations, and were written to minimize
jargon. Though there were a host of surface features we could
have used, ours were chosen based on our experience teaching
chemistry to first-year college students. For each question card,
the embedded surface feature was explicit but superficial to the
presented question. The biology card-sorting activity this work
was modeled after aligned its hypothesized deep features to
core concepts of biological literacy laid out in Vision and
Change20 and the curriculum framework for AP Biology.21 The
chemistry community has yet to find consensus around a
parallel set of core chemistry literacy concepts like those in
Vision and Change. We drew our hypothesized deep features
from the AP Chemistry framework22 and the ACS Guidelines
and Recommendations for the Teaching of High School
Chemistry.23 This method is likely flexible enough to be used
with different theoretical bases, and as a result, there were likely
many deep feature sets we could have used. Ultimately, we
chose these four categories because they crossed traditional
chemistry subdisciplines and we believed that faculty in
chemistry were likely to recognize them and likely to structure
their understanding of chemistry around them.
To maintain the integrity of this instrument, the cards used

in this study are not included for publication. Card sets are
available upon request.
Sample

In Fall 2014, 418 students and 40 faculty from a large,
comprehensive public university in the western United States
were invited to participate in this study. The student pool was
drawn from first-year, nonmajor general chemistry courses and
targeted courses within the undergraduate Chemistry/Bio-
chemistry curriculum. The faculty pool was the full-time

Figure 1. (A) Sample question card “L”. (B) Hypothesized Sorts. The
columns represent Deep Feature groups and the rows represent
Surface Feature groups. The highlighting shows that card “L” has
“Reactions” as a surface feature and “Equilibrium” as a deep feature.
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teaching faculty in a Department of Chemistry and
Biochemistry. We focused on two populations, “novice” and
“faculty,” for validation purposes. On the basis of having earned
Ph.D.’s in chemistry or a related field, we categorized faculty as
putative experts. As noted before, expertise is not necessarily
developed linearly with academic training9 and we did not use
other instruments to validate expertise, but we predicted that
members of the faculty group would interact with the stimulus
set by organizing around deep features, a proxy for expertise.
This is consistent with identifying experts as having domain-
specific knowledge in other categorization tasks.12 A further
limitation of this approach is that the faculty selected may not
be representative of expertise in chemistry outside of this type
of academic institution. To apply the tool to a cross-sectional
analysis of a chemistry program, we included groups of first-
year, second-year, and upper-division chemistry and biochem-
istry majors. See Table 1 for details on the sampled population.

Students who did not consent to participate (n = 2), did not
complete the sorting activity following the given instructions (n
= 9), or did not fit into one of four student categories described
above (n = 89) were excluded from analysis. In total, 407 of 418
invited students completed the sorting activity, a 97%
participation rate. Additionally, 31 of 40 invited faculty
completed the sorting activity, a 78% participation rate.
Experimental Protocol

The card sorting activity was carried out in either a studio
classroom setting24 or in a computer lab during regular course
meetings. Participants were provided with an informed consent
document approved by the University’s Institutional Review

Board. Each individual sorted paper cards and entered his or
her results on a secure Web site developed by the authors.
The first activity was an “unframed sort” (sometimes referred

to as an “open sort” in the card sorting literature). Participants
were prompted to consider what they knew about chemistry
and to sort the chemistry question cards into no more than 15
groups that represent common underlying chemistry principles.
They were asked to give each of their groups a name that
described what the group represented to them. They were
further instructed that there was no right or wrong way to
group the cards and were allowed to work at their own pace.
The second activity was a “framed sort” (sometimes referred

to as a “closed sort”). Participants repeated the sorting activity,
this time sorting into four prenamed categories: Thermody-
namics, Equilibrium, Structure/Function, Kinetics. These
corresponded to the hypothesized deep feature categories
embedded in the card set. Following each sorting activity,
participants were prompted to answer open-ended questions
about their sorting and to complete a short demographic
questionnaire.

Edit Distance

The edit distance18,25 (ED) was calculated as the minimum
number of moves that would be required to make a
participant’s sort match one of the hypothesized sorts. For
example, if a hypothesized sort was {ABC,DEF} and a
participant’s sort was {AB,CEF,D} it would require two
moves to make the sorts match. With 16 cards and a
hypothesized sort of four categories, the maximum edit
distance in our implementation for any given participant’s
sort was 12. A low edit distance implies an individual sort is
similar to a hypothesized sort. Thus, we can associate a lower
ED to the hypothesized deep sort (ED-Deep) with more
expert-like thinking. See the Supporting Information for details
on how the edit distance was computed.

Percent Pairings

The number of card parings that were common between the
hypothesized sorts and each participant’s sort were counted.
For example, if a participant’s sort contained the grouping
{ABC}, there were three possible pairings: “AB”, “AC”, and
“BC.” When counting the total number of pairs made by an
individual, a card placed in a category by itself was counted as
paired with a null card and was considered an unexpected
pairing. The pairings were compared to those present in the
hypothesized sorts to determine the number of deep feature

Table 1. Distribution of Card-Sorting Participants from Each
Population

Population Description of Population Participants, N

Novice Nonchemistry or biochemistry majors in their
first 2 weeks at the university

162

First Year Chemistry or biochemistry majors in their first
2 weeks in our program

77

Second
Year

Chemistry or biochemistry majors in the first
quarter of their second year in our program

28

Upper
Division

Chemistry or biochemistry majors with three or
more years within our program

51

Faculty Chemistry and biochemistry faculty with a
Ph.D. in chemistry or a related field

31

Figure 2. Comparison matrix construction from normalized pairing frequency matrices. The two left-most triangular matrices show the fraction of
each population that paired each card together in their unframed sorts. The difference of these two matrices produces the comparison matrix, where
positive values (shown in green) represent card pairings made more frequently by faculty than by novices and negative values (shown in yellow)
represent card pairings made more frequently by novices.
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pairings, surface feature pairings, and unexpected pairings. The
total number of pairs varies considerably from sort to sort
depending on the size of the groups present, so common
pairings were normalized as percentages by dividing by the total
number of pairs present in the sort. The more similar a given
sort is to a hypothesized sort, the higher Percent Pairings (%P)
value it will have. Thus, we can associate a larger %P in
hypothesized deep sort with more expert-like thinking.

Hierarchical Cluster Analysis

Hierarchical cluster analysis was used to generate dendrogram
plots illustrating the relationship between cards commonly
sorted together by a population of participants. This technique
generates a visualization of the clusters of cards sorted together
experimentally by a population of participants without the need
to compare to the hypothesized sorts generated by the
researchers. To perform the cluster analysis, a normalized
triangular pairing frequency matrix was generated for the novice
and faculty populations (see Figure 2 and the Supporting
Information). For each population, the matrix showed the
frequency with which each card was paired with every other
card. Hierarchical cluster analysis was performed on the pairing
frequency matrix for the novice and faculty populations in the
statistical software package JMP Pro.26 Ward’s minimum
variance method27 was used for the distance in the figures
presented here, though the average linkage and centroid
methods produced qualitatively similar results.

Comparison-Based Index

We developed a new metric to assign a single value to an
individual participant’s card sort that is independent of our
hypotheses about how populations might sort. All of the other
previously described numerical analytics compare to a single set
of hypothesized deep and surface feature sorts, but the
comparison-based index (CBI) compares against the distribu-
tions of actual expert and novice sorts without the need for
hypothesized references.
A comparison matrix was built by subtracting the pairing

frequency matrix of the novice population from the faculty
population’s pairing matrix. When building the comparison
matrix, unpaired cards (i.e., cards that were put into categories
by themselves) were also included. Figure 2 shows the
construction of a portion of the comparison matrix. The
leftmost matrix shows the fraction of the faculty population
who paired each card together in the unframed sort, the middle
matrix shows the fraction of the novice population who paired
each card, and the comparison matrix is the difference between
these matrices. Positive values in this matrix represent card
pairings that were made more commonly by members of the
faculty population than the novice population, whereas negative
values represent pairings made more commonly by members of
the novice population than the faculty population. For example,
54.8% of faculty paired cards B and D together, whereas only
13.5% of novices made the same pairing; the difference of these
is given in the comparison matrix as the fraction 0.412 (the last
digit varies because we calculated these values to higher
precision than illustrated in the figure). Values close to zero in
the comparison matrix either mean that neither population
paired those cards together with high frequency or that they did
so at a similar frequency, meaning that the pairing is not a good
differentiator between the two populations.
For every card pairing that appeared in an individual’s sort,

the corresponding values from the comparison matrix were
summed together to generate the CBI for the individual. For

example, if an individual’s sort contained the group {BCD}, the
CBI for this portion of the sort would be the sum of the values
looked up from the comparison matrix for the three card
pairings that exist in this group: CBI = BC + BD + CD =
−0.057 + 0.412 + 0.093 = 0.448. The more positive the value of
the CBI, the more “expert-like” the sort was when referenced to
this population of faculty and novices. It is important to note
that the CBI is inherently empirical, developed with predefined
populations of novices and expert and its utility comes in
applying it to a new population.
Statistical Analysis

On multiple measures, t-tests were performed assuming
unequal variances to determine whether novice and faculty
populations were different. Although some distributions
showed moderate skewness, the t-test is robust to non-
normality for moderate to large sample sizes (Table 1).
Furthermore, the degree of significance between the groups in
each of these comparisons was large, as suggested by extremely
small p values (p < 0.0001 for all comparisons), so it is unlikely
that results would be changed by skewness in the data. An
ANOVA with a Tukey−Kramer test was used to examine the
variances between different populations for the CBI. Differ-
ences in the variances were small and the data within each
group was either approximately normal or only slightly skewed.
The sample sizes were moderate to large (Table 1) and
differences were highly significant, so the Tukey−Kramer test is
appropriate for comparing the populations.
Qualitative Analysis

Systematic coding analysis was applied to the category names
assigned by participants in the unframed sort. Through an
iterative process of coding to consensus by multiple researchers,
a rubric with 19 codes was developed (see the Supporting
Information). A rater coded the category names for groups of
cards created by participants by assigning each category name
to one or more of the codes in the rubric. Inter-rater reliability
was estimated by double coding a pseudorandom sample of 5%
of the category names (280) representing responses from each
of the populations for every card. Two raters assigned identical
codes to 86.1% of the category names. Cohen’s κ28 is a statistic
often used to correct for the probability that agreement
between two raters occurred by chance but cannot be applied
here because category names were not restricted to a single
code. Instead, we applied Mezzich’s extension29 of Cohen’s κ,
which allows for nonmutually exclusive coding. Using the
proportional overlap procedure, the overall proportion of
agreement was 0.878 and the proportion of chance agreement
was 0.077, resulting in κ = 0.868. A κ value between 0.80 and
0.90 suggests a strong agreement between raters.30

■ RESULTS AND DISCUSSION
We focused our initial analysis on comparisons between novice
(n = 162) and faculty (n = 31) sorters. The first comparisons
use the edit distance and percent pairings described in the
Methods section. Each of these measures relies on hypothe-
sized deep features and hypothesized surface features. If the
instrument generated valid data, we would expect that on
multiple measures faculty sorters would be more likely to sort
using deep features and less likely to sort using surface features,
whereas novices would be more likely to sort using surface
features and less likely to sort using deep features. We further
employed analyses that did not reference our hypothesized
features including hierarchical cluster analysis and a compar-
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ison-based index to directly compare the sorting behavior of
different populations to each other.

Edit Distance

The edit distance (ED) reflects how many card moves one
would have to make to move from a given sort to one of our
hypothesized sorts (deep or surface). A low edit distance
implies an individual sort is similar to a hypothesized sort. In
the unframed sort, the average edit distance to the hypothesized
deep feature sort (ED-Deep) for novice sorters was significantly
greater than for faculty sorters, Figure 3Ai (p < 0.0001). Faculty
sorters were more likely to have a smaller ED-Deep and, as a
result, were more likely to sort using deep features than novices.
The opposite was true for the average ED to the hypothesized
surface feature sort (ED-Surface) as shown in Figure 3Aii.
Novice sorters were significantly more likely to have a smaller
ED-Surface, sorting with surface features more often than
faculty (p < 0.0001). These results are similar in the framed sort

(Figure 3Ai,ii). As with the unframed sort, faculty had a
significantly lower average ED-Deep (p < 0.0001) and novices
had a significantly lower average ED-Surface (p < 0.0001). Box
plots in Figure 3a highlight the distribution of ED-deep values
for faculty and novice populations. The ED-Deep values for the
novice population overlaps with only the bottom quartile of
faculty population, with the exception of a few outliers. For
both sorting activities, faculty were more likely to have ED
consistent with use of the embedded deep features, where
novices were more likely to have ED consistent with use of the
embedded surface features. Table 2 summarizes these findings.

Percent Pairing

Percent pairings (%P) (Figure 3B) offer a second metric for
investigating how similar a given sort is to one of our
hypothesized sorts (deep or surface). If a given sort is similar to
a hypothesized sort, it will result in a relatively high %P value,
representing that many of the pairs made in the sort were also

Figure 3. Comparisons of novice (yellow, n = 162) and faculty (green, n = 31) sorts (unframed and framed) relative to the hypothesized deep and
surface sorts. Each box plot represents a statistically significant difference between novice and faculty sorts using a one tailed, t-test assuming unequal
variance at 95% confidence, p < 0.0001 for each comparison. Effect sizes for these comparisons, estimated using Cohen’s d, were large, ranging from
1.8 to 3.1. (A) Edit distances to the (i) hypothesized deep sort, and (ii) hypothesized surface sort. (B) Hypothesized (i) deep feature percent pairing
and (ii) surface feature percent pairing.

Table 2. Average Values for Each Population on Edit Distance and Percent Pairs Metrics

Deep Unframed Surface Unframed Deep Framed Surface Framed

Group N Mean Standard Error Mean Standard Error Mean Standard Error Mean Standard Error

Novice: Average ED 162 9.41 0.10 7.44 0.15 8.18 0.11 7.49 0.13
Faculty Average ED 31 5.29 0.42 10.39 0.21 2.45 0.40 10.42 0.25
Novice Average % Pairs 162 17.4% 0.7% 34.8% 1.2% 22.8% 0.7% 27.5% 1.0%
Faculty Average % Pairs 31 55.7% 3.7% 10.1% 1.2% 69.6% 4.1% 8.7% 1.5%
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present in the hypothesized sort. In the unframed sort (Figure
3Bi), the average %P with the hypothesized deep feature sort
(%P-Deep) for novice sorters was significantly lower than for
faculty sorters (p < 0.0001). Faculty sorters were more likely to
have a larger %P-Deep, hence more likely to be sorting using
deep features than novices. Figure 3Bii shows that the average
%P to the hypothesized surface feature sort (%P-Surface) for
novice sorters was significantly higher than the average for the
faculty population (p < 0.0001). While neither population had
particularly high %P-Surface, novice sorters were significantly
more likely to have a larger %P-Surface and thus more likely to
be sorting using surface features than faculty. These significant
differences are also apparent in the framed sort (Figure 3Bi,ii).
In the framed sort, %P-Deep for novice sorters was again
significantly lower than %P-Deep for faculty sorters, and the %
P-Surface for novice sorters was significantly higher than %P-
Surface for faculty sorters (p < 0.0001 for both). For both the
framed and unframed sort, faculty were more likely to have %P
metrics consistent with use of the embedded deep features
while novices were more likely to have %P metrics consistent
with use of the embedded surface features. Table 2 summarizes
these findings.
Cluster Analysis

Figure 4 shows the dendrogram from the hierarchical clustering
analysis from the unframed sort for the novice and faculty

populations. The cluster analysis identifies clusters from the
pairing frequency matrix that are similar and provides a visual
tool for identifying cards frequently grouped by participants.
The number of clusters was chosen at a natural break in a plot

of the linkage distances joining each cluster versus the number
of clusters (a scree plot) for the faculty population. The
number of clusters in the novice population was chosen using
the same linkage distance cutoff.
Despite the fact that the cluster analysis is blind to the

hypothesized sorts, the four clusters in the faculty population
match exactly with the hypothesized deep feature sort. This
suggests that there is a good correlation between the
hypothesized deep feature sort and the way that faculty tend
to sort. The faculty did not all group their cards to match this
clustering scheme (i.e., there were a variety of ways that the
faculty sorted), so it is useful to look at how closely linked each
of the cards in the clusters are. The cards in the
“Thermodynamics” cluster were grouped together frequently
by the faculty population as indicated by the short linkage
distances in the dendrogram. The most frequently used
category names by faculty (overlaid in Figure 4) for each of
these clusters suggests that the majority of faculty were in fact
sorting based on the embedded deep features rather than using
an alternative theoretical framework.
The novice dendrogram is less definitive. Many more clusters

appeared than for the faculty at the same level of similarity and
tended to have greater distance between clustered cards. This
suggests that novices were not uniformly identifying the same
sets of surface features hypothesized during the card set
construction. Though the faculty and novice populations both
produced a distribution of card sorts, this shows that the faculty
were more likely to converge on similar features. Inspection of
the novice clusters in parallel with the qualitative analysis
suggested that there were other unanticipated surface features
present in the card set. For example, though not intentionally
embedded as a surface feature, the word “decomposition”
appeared in several of the problems and many novices grouped
these cards together.
In the unframed sort, participants were asked to give each

card group they created a name that described the underlying
chemistry principle that led them to form that particular group.
Systematic coding analysis of group names allowed us to
identify the top faculty group codes and top novice group codes
for each card. The most frequently used codes by each
population are the cluster names overlaid in Figure 4. Table 3
shows how many of the participants from each population
applied the most frequently used faculty and novice codes. For
14 of the 16 cards, the top codes for faculty and novices are
different. As an example, for card L, 71% of faculty used the top
faculty code, “Equilibrium”, whereas no novices used this code.
In contrast, for card L, 68% of novices used the top novice
code, “Reactions”, whereas only 3% of faculty used this code.
For most cards, there was large difference between faculty and
novices. In two cases, card J and card O, the top codes for
faculty and novices were the same. Not coincidently, in the
dendrogram in Figure 4, these are the only two cards where the
faculty’s second most used card names matched the cluster

Figure 4. Hierarchical clustering analysis dendrogram for novice and
faculty populations for the unframed sort. The distance is calculated
using Ward’s minimum variance method.27 Shorter linkage distances
indicate a higher affinity for grouping cards together. The most
frequently used qualitative analysis code for each cluster is overlaid in
the colored region; striped regions indicate that the label was the
second most frequently used code (e.g., the most common code
assigned to card O by faculty was “acid/base”, but “equilibrium” was
the second most frequently used code).

Table 3. Comparison of Top Code Usage for Faculty and Novice Sorters for Each Question Card

Top Code Usage by Card for Faculty and Novices, %

Approach Population A B C D E F G H I J K L M N O P

Use of Top Faculty Code Faculty 71 45 61 74 55 48 32 61 55 39 65 71 65 55 48 52
Novices 0 4 0 1 6 0 1 0 1 65 2 0 2 4 40 1

Use of Top Novice Code Faculty 3 10 0 0 16 39 0 0 0 39 23 3 26 19 48 0
Novices 44 45 22 40 24 68 33 36 25 65 34 68 33 23 40 33
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labels. For some cards, like G for both faculty and novices, C
for novices, and J for faculty, the top codes were used less
frequently. It may be that the embedded hypothesized deep or
surface features were not as easily identifiable. Looking at Card
G as an example, only 32% of faculty used the top faculty code
and only 33% of novices used the top novice code. In essence,
Table 3 gives an idea of the effectiveness of each card. Cards
where faculty and novices assigned different codes with a high
frequency are more effective differentiators.

Comparison-Based Index

Although the edit distance and percent pairings are effective at
measuring differences between faculty and novice populations
of sorters, they rely on the experimenter’s preconceived
hypotheses about how those populations might sort. As
demonstrated in the cluster analysis above, there is no single
novice or faculty sort, but there are some common approaches
taken to sorting by members of those populations. To provide
an empirical measure of how expert- or novice-like an
individual sort is, we introduce a new tool, the comparison-
based index (CBI), which provides a single number for a sort
compared against the actual sorting characteristics of a
population of faculty and novices.
Figure 5 shows the CBI for the novice and faculty

populations. The unframed CBI values shown in Figure 5B
were calculated from the comparison matrix represented in
Figure 5A (see the Supporting Information for the framed
comparison matrix). The comparison matrix provides a visual
representation of the pairings that were made more frequently
by faculty (green) and by novices (yellow) and is overlaid with
the hypothesized deep and surface features. Cells with distinct
color without a hypothesized category overlaid represent
unexpected pairings that occurred with high frequency.
Several features are apparent in this color-coded comparison

matrix that suggest the value of using a metric that is
independent of hypothesized sorts. There are fewer dark
yellow than dark green cells in the matrix, indicating that the
novice sorts were more evenly distributed across the available
sorting space, whereas the faculty tended to converge on a
consistent group of pairings in their sorts. This is consistent

with the hierarchical clustering data of Figure 4. The cells that
were distinctly “faculty” correlate strongly with the hypothe-
sized deep features; the most prominent exception was card O,
which was left unpaired by 38.7% of faculty and only 4.3% of
novices. In contrast, the distinctly “novice” pairings did not
correlate as strongly with hypothesized features because the
novices identified other surface features not intentionally built
into the card set. Although the percent of unexpected pairs
leads to this same conclusion, these matrices give insight into
what those unexpected pairs were.
An example of the insight that can be gained from inspection

of the qualitative analysis for unexpected pairs can be found in
the group {ADHP}. All of these cards contained the word
“decomposition.” All four of those cards were placed in
categories coded as “decomposition” with a frequency between
30 and 40% by the novice population while the members of the
faculty population never used the code at all. Although not
included as a hypothesized surface feature by design in the card
set, decomposition was a true surface feature that arose from
the sorting task. Card A does not appear to be grouped with D,
H, and P in Figure 4 because A was more frequently associated
with the hypothesized surface feature “reactions”, but
“decomposition” was the second most frequently used code
for this card. This would not be as readily evident from the
cluster analysis, which demonstrates the utility of the pairing
frequency matrices. Additionally, the card pairing HP was the
most frequently paired within this grouping. Both of these cards
were coded as “decomposition” or “images” with similar
frequency by novices. Multiple approaches to sorting by
novices captured these cards as a pairing based on features that
were entirely ignored by faculty.
Although both the cluster analysis and inspection of the

pairing matrices reveal that faculty tend to organize around the
hypothesized deep features, there was still a distribution of ways
of sorting the cards by the faculty population. The CBI offers a
way to measure an individual’s sort against the distribution of
ways that faculty and novices in the field will organize the
problems presented in the card set. Figure 5B shows the CBI
for the novice and faculty populations. Because the CBI is built

Figure 5. (A) Comparison matrix for the unframed sort and (B) Comparison based index (CBI) for novice and faculty populations. The comparison
matrix shows those card pairings which best differentiate the faculty and novice populations. The X represents cards that were left unpaired.
Hypothesized deep and surface feature pairings are overlaid. The unframed CBI shown in (B) were calculated from this comparison matrix.
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from a matrix using the faculty and novice sorts as a training set,
the faculty will, by definition, have a higher CBI than the
novices, but this measure becomes particularly useful when
comparing other populations to these faculty and novice
populations (see the Application section below). Moreover,
when the deep-feature categories were introduced in the framed
sort, the CBI increased for both the novice and faculty
populations. The average faculty CBI increased by almost twice
as much as the novice CBI. The relative magnitude of the
increase in CBI indicates that the frame led to a more narrow
distribution of sorts for the faculty than it did for the novices,
which suggests that faculty recognized the hypothesized deep
features in the cards based on the framed categories better than
novices did.

Application to Chemistry Program Assessment

In an effort to create a departmental “snapshot” relevant for
program assessment, we focused on comparisons between
novice (n = 162), first year majors (n = 77), second year majors
(n = 28), upper division majors (n = 51), and faculty (n = 31).
The entire task took an average 26.1 ± 0.5 min, with no
significant difference between any population; 80% completed
between 16.1 and 37.1 min. Figure 6A reports unframed
comparison-based indexes (CBI) for each population. For both
metrics, there was a trend toward more expert-like sorting as
students progress through our program. Somewhat surprisingly,
we were able to detect significant differences between novice
and first year sorters (p < 0.0001). Because the novice and first-
year groups are both in their first few weeks of study, this
difference is almost certainly not a result of the chemistry
program at the university. It likely reflects a difference in the
population who chose a chemistry or biochemistry major. As

illustrated in Figure 6A, the novice and first-year populations
are similar except for the upper extreme on the CBI for the
first-year majors.
The biggest jump toward expert-like sorting occurred

between first and second year majors (ΔCBI = 2.7). Although
we do not have the analytical power in this data set to
statistically differentiate between second year and upper
division students, the trend is an increase in expert-like sorting
as students advance through our program. Framed CBI values
for each population (Figure 6Aii) also showed significant
differences and followed the same general trend. Figure 6B
highlights how different populations in our departmental
snapshot use the top novice and top faculty codes when
naming categories. First year students use more novice-like
codes (fewer faculty-like codes) than second year students, and
second year students use more novice-like codes (fewer faculty-
like codes) than upper-division students. Taken together with
the CBI trend, this evidence suggests students are developing
more expert-like thinking as they progress within our program.
The growth toward more expert-like conceptual thinking

observed in this data set suggests that this card sorting task
could provide useful information in program assessment. With
larger populations of intermediate-level students, longitudinal
tracking of individual students, and analysis of follow-up
questions to the sorting task, we should be able to identify in
what areas related to the task conceptual growth is occurring,
where it is not, and how that is linked to coursework and
related experiences.

Framed Vs Unframed Sorts

Subjects were asked to perform an unframed sort where they
sorted using their own categories, and a framed sort where

Figure 6. Departmental snapshot based on the unframed and framed sort. Comparisons of novices (yellow, n = 162), first year majors (orange, n =
77), second year majors (red, n = 28), upper division majors (blue, n = 51), and faculty (green, n = 31). (A) Comparison-based index (CBI) values
for (i) unframed and (ii) framed sorts. (B) Comparison of top codes of each population in departmental snapshot. %Fac and %Nv refer to the
percent of top faculty and novice codes applied to category names for each card (see Table 3). For the unframed sort (Ai), in an ANOVA with a
Tukey−Kramer test, each of the populations are significantly different from each other on CBI (p < 0.0001) except for the second year-upper
division comparison. Similarly, for the framed sort (Aii) each of the populations are significantly different from each other for all comparisons on CBI
(p < 0.020). For both the unframed sort and framed sort the effect size was large (η2 = 0.57 and 0.60 for unframed and framed, respectively).
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subjects sorted cards into four prenamed categories that
corresponded to the hypothesized deep feature categories.
On the basis of average edit distances and average %Pairs to the
hypothesized deep sort (Figures 2Ai and 2Bi), framing
increased the probability that subjects sorted based on the
embedded hypothesized deep features. Although this was true
for both faculty and novices, the effect was more pronounced
with faculty sorters. As an example, looking at changes in %
Pairing between framed and unframed sorts (Figure 2bi), the
novice population increases from an average of 17.4% ± 0.7%
to 22.8% ± 0.7% deep pairs, a net gain of 5.4%, whereas the
faculty population increases from 55.6% ± 3.7% to 69.6% ±
4.1% deep pairs, a net gain of 14.0%. Perhaps faculty sorters,
who may have used a different strategy for their unframed sort,
were more likely to recognize the hypothesized deep feature
categories as a viable alternative. The result was that the framed
sort offers a greater contrast between faculty and novices. These
trends were also seen in Figure 6 for our departmental cross
section. Looking at average CBI values for the unframed and
framed sorts (Figure 6A), we could detect a statistically
significant difference between second year students and upper
division students with the framed sort, which did not appear in
the unframed sort.

■ CONCLUSIONS
In this study, participants were asked to complete unframed
and framed sorts of a set of 16 chemistry question cards,
embedded with hypothesized deep and surface features, to
answer our first research question: can a simple card sorting
exercise distinguish between populations of novices and
putative experts in chemistry? Based on multiple metrics tied
to hypothesized deep and surface features, both of these card
sorting exercises were able to statistically differentiate between
populations of faculty and novice sorters (Figure 3). This
relatively simple card-sorting task is an instrument that
generates valid data for distinguishing between novices and
putative experts.
By carefully examining the actual card-pairs made by faculty

and novice sorters, we were able to address our second research
question: is there an effective way to measure how expert-like
an individual card-sorting result is without measuring against an
experimenter’s expectation of how experts will organize
information? Edit distance and percent pairing both rely on
the hypothesized deep and surface features embedded in the
question cards, which in turn rely to some degree on
experimenters’ expectations. As is clear from the dendrogram
in Figure 4 and to a lesser extent the Deep/Surface
comparisons in Figure 3, as experimenters, we were better at
predicting expert-like behavior than novice-like behavior.
Faculty were drawn more strongly to deep features than
novices were drawn to surface features, consistent with
literature definitions of expertise described in the introduction.
The new comparison-based index (CBI) metric relied on actual
card-pairs made by faculty and novice populations, not
experimenters’ preconceptions. This new metric is as effective
at differentiating (Figure 6) as our metrics that rely on
hypothesized sorts, but is hypothesis-independent. With an
experimental novice−faculty pair comparison matrix in hand,
this card sorting activity has yet another metric to characterize
student growth.
With hypothesis- and comparison-driven metrics in place and

sorting data for a cross section of our departmental student
population, we gained some insight into our third research

question: what can the sorting task tell us about the
development of expert-like thinking through a chemistry
education curriculum as a tool for program assessment? Figure
6 provides a proof of principle that the task measures significant
growth on comparison driven metrics. Although we established
a set of methods here, the data suggest that insights regarding
the use of various theoretical frameworks and their relationship
to the curriculum may be obtained in future studies, though
these analyses are beyond the scope of this paper. To be an
effective longitudinal tool, this would have to be a repeatable
measure. Similar to studies in biology, the framed sort may be
more effective at distinguishing between putative expert and
novice sorters.18 Though the unframed sort may have a smaller
contrast, it may be a more appropriate tool for longitudinal
studies as it can be administered multiple times without
exposing the hypothesized deep feature categories.
In short, we have introduced an instrument (card sets are

available upon request) that can probe conceptual expertise in
chemistry through a simple card sorting activity. We have also
developed novel metrics that are hypothesis-independent. In
the future, we plan to use this tool in a longitudinal study to
track the development of expert-like thinking in students within
our program.
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