
Immunity to α‑Gal: Toward a Single-Antigen Pan-Vaccine To
Control Major Infectious Diseases

Infectious diseases constitute a growing burden for
human health worldwide. In particular, vector-borne
diseases account for 17% of all infectious diseases

and kill about 1 million people annually.1 These diseases are
caused by a diverse group of pathogens including viruses,
bacteria, and protozoa that are transmitted by arthropod
vectors such as ticks, mosquitoes, sandflies, kissing bugs,
and tsetse flies.1 Among the nonviral vector-borne diseases,
malaria, leishmaniasis, Chagas disease, sleeping sickness, and
Lyme disease represent the highest burden to human health.
Further, vaccines are not available for the prevention and
control of these diseases.2 Among non-vector-borne diseases,
tuberculosis caused by mycobacteria of the Mycobacterium
tuberculosis complex is one of the world’s most common
causes of death from infectious diseases.3

All pathogens producing these deadly diseases have some-
thing in common: the galactose-alpha-1,3-galactose (α-Gal)
epitope exposed on their surface (Table 1). During evolu-
tion, humans lost the ability to synthesize the carbohydrate
α-Gal, which resulted in an almost unique capacity to
produce high antibody titers against α-Gal.4 The immunity
to α-Gal may neutralize the pathogens with α-Gal on their
surface, and therefore the induction of this protective
immune response may constitute an effective intervention
for the prevention and control of infectious diseases.5 The
study of the anti-α-Gal immunity will provide the basis to
develop a single-antigen “pan-vaccine” to control major infec-
tious diseases.

The paper recently published by Moura et al.6 shows that
vaccination with α-Gal protects against cutaneous and
visceral leishmaniasis in the α-galactosyltransferase knockout
mouse model designed to reproduce the anti-α-Gal response
observed in humans. This work extends previous results
showing that anti-α-Gal antibodies induced by α-Gal protect
against Trypanosoma cruzi and Plasmodium spp.4,7 In partic-
ular, Yilmaz et al.4 showed that the anti-α-Gal immunity
blocks the transmission of Plasmodium spp. by Anopheles
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Recent developments point at the possibility of
using the immunity to α-Gal to control
infectious diseases.

Figure 1. Immunization with the carbohydrate α-Gal could protect
against Trypanosoma, Leishmania, Plasmodium, and Mycobacterium
pathogens. Alternatively, probiotic bacteria producing α-Gal could be
used to develop a probiotic-based vaccine.
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mosquitoes and targets Plasmodium sporozoites in the skin
but not in the blood. Thus, the protective effect of anti-α-Gal
antibodies was exerted in the dermis, via a complement-
mediated mechanism that was no longer effective once
sporozoites reach the blood.4 Additionally, Moura et al.6

showed that the anti-α-Gal immunity protects against
Leishmania spp. challenge by decreasing parasite infection in
the liver and spleen. These results support the efficacy of
immunization with α-Gal against pathogens with α-Gal on
their surface causing three of the most prevalent vector-borne
diseases: malaria, leishmaniasis, and Chagas disease (Table 1).
Interestingly, Yilmaz et al.4 showed that not only immunization
with α-Gal but also gut colonization by the human pathobiont
Escherichia coli O86:B7, producing α-Gal on its surface,
induces a protective anti-α-Gal immunity against Plasmodium
transmission. These results confirmed that the production of
natural anti-α-Gal antibodies is induced in response to gut
microbiota bacteria and suggested that human microbiota
composition may be associated with the incidence of malaria
by an α-Gal-mediated mechanism.8 Curiously, recent reports
showed that the risk of P. falciparum infection is associated
with gut microbiota composition in malaria-endemic regions.9

Evidence of the role of the anti-α-Gal immunity can be noted
in epidemiological studies. For instance, blood type B indivi-
duals produce less anti-α-Gal antibodies; in turn, the frequency
of this blood type is positively associated with higher incidence
rates of malaria and tuberculosis in endemic regions.10 In addi-
tion to vector-borne pathogens (Table 1), Mycobacterium spp.
were also found to produce α-Gal on their surface.10

Collectively, these results suggest that the way forward to
control major infectious diseases is the development and
testing of probiotic-based vaccines containing bacteria with
membrane-exposed α-Gal.5 The antibody response to α-Gal

would be effective against various pathogens that contain
α-Gal on their surface (Figure 1). Therefore, the use of
probiotic-based vaccines exploiting this major evolutionary
adaptation may constitute an effective strategy to reduce the
impact of infectious diseases and improve human health
worldwide. Furthermore, if effective, these vaccines consti-
tute an affordable and orally administered intervention that
could be easily used in the world’s poorest countries.
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