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ABSTRACT: We present an elementary, but still quite
rigorous derivation of the Clausius inequality, which sheds a
new perspective on the second law. Unlike the classical
approach, our derivation does not employ the Carnot cycle.
The Clausius inequality follows in a straightforward way from
the first law and thermodynamic stability conditions without
invoking the Clausius or the Kelvin−Planck statement of the
second law. The background knowledge required for this
article is the same as that for the usual textbook presentation of
the second law. The new presentation of the second law is,
therefore, appropriate for an introductory thermodynamics
course.
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The second law of thermodynamics has more formulations
than any other physical law. There is a vast quantity of

literature on the second law, and attempts to clarify the second
law would continue to remain of interest.1

In most physical chemistry textbooks,2−5 the presentation of
the second law of thermodynamics is based on the Clausius or
the Kelvin−Planck statement, which is used to validate the
Carnot’s principle: “No heat engine can be more efficient than
a reversible heat engine when both engines work between the
same pair of hot and cold heat reservoirs” (ref 2, p 81). Then
the efficiency of a heat engine performing the Carnot cycles
with the ideal gas as the working substance is calculated, which
leads to the definition of entropy. This description of the
second law requires the knowledge of the first law,
thermodynamic changes in the reversible processes of ideal
gas, the concept of an exact differential, and so on.
Another popular approach to the second law is to start with a

purely mathematical axiom as first formulated by Caratheó-
dory1,6,7 For example, the Born’s version of the Caratheódory’s
theorem states that “In every neighborhood of a representative
point of system in phase space there exist neighboring points
that cannot be reached through any adiabatic process” (ref 7, p.
38). However, this approach has two disadvantages. First, the
physical content of such a mathematical axiom can be
understood only after learning the geometric aspects of
thermodynamic equations. Second, the required mathematical
background knowledge is too advanced for most college
students.
In this article, we show that the second law, as expressed by

the Clausius inequality, can be presented more economically
without resort to the Carnot engine and even without the
Clausius or the Kelvin−Planck statements. Specifically, we
show that the derivation of the Clausius inequality requires just

the thermodynamic stability conditions (e.g., the positivity of

compressibility). The derivation is general; it holds for any

closed system of arbitrary materials involving any kinds of work.

The required background knowledge is the same as that

required for the usual textbook presentation of the second law

described above.
For engineering students, the classical approach may still be

preferred since the basic concepts on heat engines can also be

gained. However, such materials can be covered quickly based

on the Clausius inequality as shown in the Supporting

Information.

■ INTRODUCING THE ENTROPY BASED ON IDEAL
GAS PROCESSES

First, we introduce a new state function, called the entropy. The

material in this section was first presented in ref 8 and may also

be found in several textbooks,3,5 but it is included to make the

article self-contained.
For an ideal gas, the internal energy U is a function of

temperature only so that

=U C T Td ( ) dV (1)

where CV is also a function of T only. From eq 1 and the first

law, the heat transfer associated with a reversible, small change

in temperature T and volume V of an ideal gas is given by
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where the subscript “rev” designates a quantity associated with
a reversible process. δqrev is an inexact differential; since
[∂CV(T)/∂V]T ≠ [∂(nRT/V)/∂T]V, it does not satisfies the
Euler’s criterion for an exact differential. Since the heat transfer
depends on the temperature, one may multiply eq 2 by 1/T as
an integrating factor. This gives
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Since [∂(CV/T)/∂V]T = [∂(nR/V)/∂T]V = 0, δqrev/T is an exact
differential. In fact, we can rewrite the differential relation, eq 3,
as
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The quantity within the square bracket is a state function, that
is, a function of T and V, which will be denoted by S and called
the entropy.

■ GENERALIZING THE RELATION TO ARBITRARY
MATERIALS

We have just seen that δqrev/T is an exact differential for an
ideal gas system, but it holds for any systems made up of
arbitrary materials. To show this, consider a composite system
made up of two subsystems A and B, of which A is an ideal gas,
while B consists of any arbitrary material (see Figure 1). The

whole system is insulated but the inner wall separating the two
subsystems conducts heat, so that the two subsystems may
exchange heat with each other but not with the surroundings.
However, works may be involved between the two subsystems
as well as between them and surroundings. Although the ideal
gas system A involves only the volume-expansion work, the
subsystem B may involve various kinds of work via the coupling
with surroundings.
Suppose now that the composite system undergoes a

reversible cyclic process. Since the whole system is insulated,
δqrev,B = −δqrev,A at every moment during the process. For the
process to be reversible, thermal equilibrium must be
maintained between the two subsystems so that TA = TB at

every instant. If the inner wall is movable, we must also have PA
= PB, but this is not the necessary condition. Therefore, we have
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which indicates that δqrev,B = /TB is also the exact differential of
a state function, that is, SB. Therefore, for any system,
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■ THE CLAUSIUS INEQUALITY AND THE SECOND
LAW

The material in this section has been presented in ref 3.
However, it is included to make the article self-contained. Let
us first consider a system in which only the volume-expansion
work is possible. When such a P−V−T system undergoes an
infinitesimal change from a state with internal energy U and
volume V to a neighboring state with U + dU and V + dV, the
first law states that

δ δ δ= + = −U q w q P Vd dex (7)

This relation is valid for both reversible and irreversible
processes. Now if the same change in the state is carried out
reversibly, eq 7 becomes

δ= −U q P Vd drev (8)

U is a state function, so that its change calculated from eq 8
must be equal to that calculated from eq 7. We thus have

δ δ− = −q q P P V( ) drev ex (9)

Now, if P − Pex > 0, the system must expand (dV > 0) as
required by the thermodynamic stability condition. On the
other hand, if P − Pex < 0, we must have dV < 0. In either case,
(P − Pex) dV > 0 and it follows that δqrev> δq. Since T > 0, we
then obtain the Clausius inequality, which is the mathematical
statement of the second law,
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where in the second relation, the equality applies only to a
reversible process. Finally, we note that the above argument can
be extended to the processes involving any other types of
work.5,7
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A short analysis on the efficiency of the Carnot engine with
arbitrary working substance is given based on the Clausius
inequality. This material is available via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: sangyoub@snu.ac.kr.

Notes

The authors declare no competing financial interest.

Figure 1. A composite system made up of two subsystems A and B.
The subsystem A is an ideal gas, while the subsystem B consists of any
arbitrary material. The whole system is insulated but the two
subsystems may exchange work between them as well as with
surroundings.
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