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ABSTRACT: Early introduction of symmetry concepts in the Physical
Chemistry curriculum has been shown to help students understand the
relative simplicity of spectroscopic selection rules. Most Quantum Mechanics
and Spectroscopy textbooks begin with various one-dimensional problems.
Application of symmetry arguments to the particle-in-a-box problem is
presented in some books, but no sources have been found where symmetry
arguments are used to determine the selection rules for particle-on-a-ring
spectroscopic transitions. This hinders the early introduction of symmetry
concepts. This article removes this hindrance by deriving the particle-on-a-ring
rotational selection rules using group theory symmetry arguments. The D∞h
character table is used to define rotational wave function symmetry, and the
D∞h direct product table is used to determine the nonzero behavior of the
transition dipole moment integral. A survey of the symmetry of allowed
transitions leads to the well-known rotational selection rules of Δm = 0 for
Rayleigh scattering, Δm = ±1 for direct absorption and emission, and Δm = ±2 for Raman scattering. This approach will allow
the use of symmetry arguments for spectroscopic selection rule determination for the one-dimensional problems that establish
the early foundation in Quantum Mechanics and Spectroscopy courses.
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■ INTRODUCTION

This communication is written to the physical chemistry
professor for the benefit of the student to clarify the connection
between spectroscopic measurement, molecular symmetry,
group theory, and quantum mechanics. When introducing
quantum theory, every major physical chemistry text begins by
citing various failures of classical physics.1−3 The overwhelming
majority of these failures involve spectroscopy. The transition
dipole moment (TDM) integral is central to these failures and
is at the heart of all spectroscopic measurements as it defines
the wave function interaction in a transition. In a spectrum, the
selection rules record which transitions can occur through
interaction with light.4 These rules do not distinguish the
intensity that the transition will exhibit but merely list which
transitions are allowed or forbidden. Understanding how the
TDM integral governs the selection rules will open up many
spectroscopic techniques to the student, and will give them an
understanding of the unshakable connection between the
atomic-level wave function and the laboratory-level measure-
ment of spectroscopic transitions.
The selection rules can be calculated using analytical calculus

for 1D systems such as the particle in a box (PB), the particle
on a ring (PR), and the harmonic oscillator (HO). But these
analytical solutions are moderately long, and the students get
lost in understanding the original purpose. Student comments

supporting this conclusion are available as Supporting
Information.
It is precisely here that symmetry finds its greatest use. The

symmetry of the PB and HO problems is obvious, and the
odd−even symmetry selection rules developed in these 1D
cases can be used to explain molecular electronic and
vibrational selection rules.
One problem exists with this early introduction approach:

the inability to use symmetry arguments for rotational selection
rules. The 1D PR selection rules traditionally have been
justified using the conservation of angular momentum. The
professor must either state this condition by fiat, or take a
detour introducing a separate concept of angular momentum
for rotational systems. In an effort to avoid this detour, and
unify defining selection rules for 1D systems in a simplistic
manner, this article has derived the rotational selection rules
based on symmetry.
Previous articles have covered many aspects of spectroscopic

transitions. Such aspects include the definition of the rotational
energy levels of the PR system, and the basic derivation of
selection rules deduced from the electric dipole transition.5,6

Since the derivation of rotational selection rules can be
daunting, some have rationalized the selection rules for student
simplicity.7 Other articles have used group theory to derive
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these selection rules for three-dimensional rotation8 and labeled
symmetry species for rotational levels within full symmetry
groups.9 Some articles have shown the selection rules through
symmetry conservation without using the TDM integral, while
others have given credit for the justification of selection rules to
the quantization of light.10,11 However, none of these sources
present the PR selection rule derivation at a level suitable for
early introduction in the semester.

■ TRANSITION DIPOLE APPROXIMATION
Selection rules are based on the approximation that the
intensity of a transition is proportional to the square of the
TDM integral (eq 1). Typical examples involve an electric
dipole (as in electronic spectroscopy, permanent dipoles in
rotating polar molecules, or fluctuating dipoles in vibrating
molecules), but other transition moments can be studied such
as the polarizability tensor in Raman scattering. The electric
dipole function is represented by μ in eq 1, ψn′ is the upper
wave function, and ψn is the lower wave function in the
evaluated transition.1 The TDM integral is an assessment of the
interaction between the levels in a transition and the dipole
moment operator.12 Those transitions with an integral that
equals zero are forbidden, and those with nonzero integrals are
allowed.1 A shorthand representation of the same TDM
integral with Dirac notation is used for simplicity (eq 2).

∫ ψ μψ∝ ′I x[ d ]n n
2

(1)

μ∝ ⟨ ′| | ⟩I n n 2
(2)

■ SYMMETRY-DEFINED SELECTION RULES
To determine the selection rules, symmetry is used to predict
the resulting value (either zero or nonzero) of the transition
dipole moment integral (eqs 3 and 4).12

⟨ | | ⟩ = ⟨ | ⟩

= ⟨ ⟩

= ∴

Even Odd Even Even Odd

Odd

0 Forbidden (3)

⟨ | | ⟩ = ⟨ | ⟩ = ⟨ ⟩ ≠ ∴Odd Odd Even Odd Odd Even 0 Allowed
(4)

Each wave function in the integrand is identified as having an
odd or even symmetry based on the properties of even and odd
functions. If f(x) equals f(−x), then f(x) is an even function. If
f(−x) equals −f(x), then f(x) is an odd function.4 The direct
product of the irreducible representations of each wave
function in the transition and the dipole operator will yield
the overall symmetry of the integrand (eqs 3 and 4).

■ ROTATIONAL SELECTION RULES
Due to the circular nature of the coordinate system, the even or
odd symmetry of the wave function is difficult to establish. The
PR wave function has real and imaginary portions. Since Euler’s
relationship defines both portions as having the same symmetry
merely shifted by π/2 from each other, the evaluation of only
the real portion is enough to identify rotational wave function
symmetry. The normalized PR wave function is shown in eq 5.4

The wave functions are denoted by the rotational quantum
number m and the rotational angle on the ring in radians, ϕ.
The quantum number can be positive and negative integers
including zero. Thus, when m is negative, the arguments inside

the cos and sin functions are negative. This is interpreted as
rotation in the opposite direction as positive m wave functions.
This is also an example of degenerate energy states for m ≠ 0.

ψ φ
π

φ φ= +m m( )
1

2
[cos( ) i sin( )]m (5)

For this case when manipulating the 1D PR system, it will be
understood as an electron orbiting on a ring with a fixed radius
confined to the x, y plane therefore giving a single variable, ϕ,
the angle of rotation. In this specific case, the rotational
selection rules would be called the electronic angular
momentum selection rules. Figure 1 defines the coordinate
system of the ring and the angle of rotation.

■ RING SYMMETRY
The symmetry of the ring-shaped coordinate system may be
used to determine the point group, and the subsequent
symmetry of each rotational wave function is derived from the
character table of that point group (Table 1). Since the ring has
the same symmetrical properties of a cylinder with an inversion
center, the point group of D∞h denotes its symmetry.

4 Another
view is through extrapolation from cyclopropane (D3h) to
benzene (D6h) to a ring (D∞h) with infinite C2 and σv giving the
1DPR system a D∞h symmetry.

4

■ ASSIGNING SYMMETRY TO ROTATIONAL WAVE
FUNCTIONS

Each wave function is determined to be even (gerade) or odd
(ungerade) by inspecting its behavior upon inversion through
aerial observation of the positive and negative lobes on
opposing sides of the ring (Figures 2 and 3).13 Wave functions
with lobes that are unchanged by inversion are gerade, g, while
those which are inverted are ungerade, u (Table 1). Further
wave function classification is determined by recognizing that
the characters under the rotational symmetry element (2C∞

ϕ)
are in fact the real portion of the 1D PR wave function (eq 5).14

For example, the E1 character 2 cos(ϕ) is similar to the real part
of the m = ±1 wave function, while the E2 character 2 cos(2ϕ)
is similar to the real part of the m = ±2 wave function. The
electric dipole μ of a charged particle is typically represented as
the x-axis (μx). However, in the D∞h character table, x and y are
inseparable and thus the dipole moment operator μ(x,y) will
have the E1u irreducible representation. If this were a 3D
system, μz (A1u) would play a role. But with the electron
confined to the xy-plane, a dipole along the z-axis is impossible.

Figure 1. One dimensional ring with defined coordinate system and
rotational angle.
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As every rotational wave function is assigned an irreducible
representation, trends appear making it simpler to further label
all higher-level wave functions (Figure 3). Above the ground
state, the number in each irreducible representation corre-
sponds to the quantum number, and ungerade is assigned to
odd quantum numbers while gerade is assigned to even
quantum numbers. This is summarized in eqs 6.1−6.3.

=mA for 01g (6.1)

| | >| | mE for even 0m g (6.2)

| | mE for oddm u (6.3)

■ EXPANDING DIRECT PRODUCT TABLE
The product of the given irreducible representations in the
transition will determine the overall symmetry of the TDM
integrand. We found it necessary to expand the direct product
tables to E6 (m = ±6) to be sure of the selection rule trends.
This expansion to produce Table 3 is illustrated in Table 2.

⊗ = ⊕E E E E1 2 1 3 (7)

■ SELECTION RULE DETERMINATION
The symmetry of the integrand can be determined using the
D∞h direct product table. An allowed transition (i.e., nonzero
value for the TDM) is obtained only if the symmetry of the
integrand contains the totally symmetric irreducible represen-
tation A1g in the D∞h character table.

12 The following equations
present the results for Δm = {±1, ±2, and ±3} which is enough
to establish a trend that precludes any allowed higher Δm
transitions.

The A1g symmetry in the integrand in the direct product
results in Table 4 yields an allowed transition, confirming the
selection rule of Δm = ±1.
The transitions with Δm = {±2, ±4, ...} are all forbidden due

to the g−u product rules (Γg ⊗ Γg = Γg; Γu ⊗ Γu = Γg; Γu ⊗
Γg = Γu). The resulting integrand will have u symmetry and
cannot possibly contain A1g.
The results in Table 5 show the transitions from m = 0 to

{±3, ±5, ...}. The Δm = ±3 transitions in Table 5 require some

Table 1. D∞h Character Table
12

D∞h E 2C∞
ϕ ... ∞σv i 2S∞

ϕ ... ∞C2

A1g = ∑g
+ 1 1 1 1 1 1 x2+y2,z2

A2g = ∑g
− 1 1 −1 1 1 −1 Rz

E1g = ∏g 2 2 cos(ϕ) 0 2 −2 cos(ϕ) 0 (Rx,Ry) (xz,yz)
E2g = Δg 2 2 cos(2ϕ) 0 2 2 cos(2ϕ) 0 (x2−y2,xy)
E3g 2 2 cos(3ϕ) 0 2 −2 cos(3ϕ) 0
E4g 2 2 cos(4ϕ) 0 2 2 cos(4ϕ) 0
Emg 2 2 cos(mϕ) 0 2 (−1)m2 cos(mϕ) 0
A1u = ∑u

+ 1 1 1 −1 −1 −1 z
A2u = ∑u

− 1 1 −1 −1 −1 1
E1u = ∏u 2 2 cos(ϕ) 0 −2 2 cos(ϕ) 0 (x,y)
E2u = Δu 2 2 cos(2ϕ) 0 −2 −2 cos(2ϕ) 0
E3u 2 2 cos(3ϕ) 0 −2 2 cos(3ϕ) 0
E4u 2 2 cos(4ϕ) 0 −2 −2 cos(4ϕ) 0
Emu 2 2 cos(mϕ) 0 −2 (−1)m+12 cos(mϕ) 0

Figure 2. Rotational wave function |m| = 1 plotted from 0 to 2π (0° to
360°). Positive and negative lobes establish the positive and negative
wedges in a top-down plot of the wave functions.

Figure 3. Top-down plot of the real portions of the first six PR wave
functions and their irreducible representations.
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analysis of the trends seen in the direct product table (Table 3).
They are forbidden because the only way to yield an A1g
irreducible representation would be for the direct product of
E1u ⊗ Em to yield an E(m+3) irreducible representation. This is
impossible because E1 can only increase the subscript by one
(E1 ⊗ Em = E(m+1) ⊕ ...). This same limitation will occur for all
higher Δm transitions, making Δm = ±1 the only allowed
transition type in the 1DPR system for direct absorption and
emission spectroscopies.
The Rayleigh (Δm = 0) and Raman (Δm = ±2) scattering

selection rules can be determined using this method. These
scattering phenomena utilize the polarizability operator (α),
which transforms as all the second-order terms (x2 + y2, xz,
etc.) in the character table (A1g ⊕ E1g ⊕ E2g).

α∝ ⟨ ′| | ⟩I m m 2
(9)

∝ ⟨ ′| ⊕ ⊕ | ⟩I m A E E m1g 1g 2g
2

(10)

The solution of eq 10 for the Rayleigh scattering selection
rule (Δm = 0) is shown in Table 6. The first row of Table 6
yields an allowed transition because of the product of three A1g
irreducible representations. The second and third rows show
that Rayleigh scattering is allowed for m ≠ 0 because the Em on
the right survives left-multiplication by the A1g portion of the
polarizability operator and the direct product of any irreducible
representation with itself (Em ⊗ Em) will contain A1g.
The allowed transitions for Raman scattering (Δm = ±2) are

shown in Table 7. The first row in Table 7 yields an allowed
transition because the E2g in the polarizability operator survives
multiplication on the right by A1g and yields A1g when left-
multiplied by E2g. The second and third rows in Table 7 show
that Raman scattering is allowed for all m ≠ 0 because E2 ⊗ Em
= Em−2 ⊕ Em+2, and Em+2 ⊗ Em+2 will contain A1g.
The polarizability operator is even (gerade) while the electric

dipole operator is odd (ungerade). Therefore, the Δm = {±1,
±3, ...} transitions fail the g−u symmetry requirement under
the polarizability operator just as the Δm = {±2, ±4, ...}

transitions fail the g−u symmetry requirement under the
electric dipole operator.
Table 8 shows that Δm = ±4 transitions are forbidden even

though they pass the g−u symmetry requirement. The only way
to yield an A1g irreducible representation would be for the
direct product of α ⊗ Em to yield an E(m+4) irreducible
representation. The polarizability tensor can only increase the
subscript by two (E2 ⊗ Em = E(m+2) ⊕ ...). This same limitation
will occur for all higher Δm transitions, making Δm = ±2 (+2
for Stokes shift; −2 for anti-Stokes shift) the only allowed
transition type in the 1DPR system for Raman scattering.

■ CONCLUSION
Introduction of symmetry concepts early in the Physical
Chemistry curriculum when students are working on the 1D

Table 2. Example Showing the Validity of Eq 7a

Representation E 2C∞
ϕ ∞σv i 2S∞

ϕ ∞C2

E1g 2 2 cos(ϕ) 0 2 −2 cos(ϕ) 0
E2g 2 2 cos(2ϕ) 0 2 2 cos(2ϕ) 0
E3g 2 2 cos(3ϕ) 0 2 −2 cos(3ϕ) 0
E1 ⊗ E2 4 2 cos(ϕ) + 2

cos(3ϕ)
0 4 −2 cos(ϕ) − 2

cos(3ϕ)
0

E1 ⊕ E3 4 2 cos(ϕ) + 2
cos(3ϕ)

0 4 −2 cos(ϕ) − 2
cos(3ϕ)

0

aRow 4 shows the left side of eq 7, and row 5 shows the right side of
eq7.

Table 3. D∞h Expanded Direct Product Table

D∞h A1 A2 E1 E2 E3 E4 E5 E6

A1 A1 A2 E1 E2 E3 E4 E5 E6

A2 A1 E1 E2 E3 E4 E5 E6

E1 A1 + A2 + E2 E1 + E3 E2 + E4 E3 + E5 E4 + E6 E5 + E7

E2 A1 + A2 + E4 E1 + E5 E2 + E6 E3 + E7 E4 + E8

E3 A1 + A2 + E6 E1 + E7 E2 + E8 E3 + E9

E4 A1 + A2 + E8 E1 + E9 E2 + E10

E5 A1 + A2 + E10 E1 + E11

E6 A1 + A2 + E12

Table 4. Analysis Showing That Δm = ±1 Transitions Are
Allowed by Symmetry

Transition Symmetries
Result (All ≠

0)

⟨1|μ(x,y)|0⟩ = ⟨E1u|E1u|A1g⟩ = ⟨A1g ⊕ A2g ⊕
E2g⟩

⟨m + 1odd|μ(x,y)|meven⟩ = ⟨E(m+1)u|E1u|Emg⟩ = ⟨A1g ⊕ E2g ⊕
E2mg ⊕ A2g
⊕ E2(m+1)g⟩

⟨m + 1even|μ(x,y)|modd⟩ = ⟨E(m+1)g|E1u|Emu⟩ = ⟨A1g ⊕ E2g ⊕
E2mg ⊕ A2g
⊕ E2(m+1)g⟩

Table 5. Analysis Showing That Δm = ±3 Transitions Are
Forbidden by Symmetry

Transition Symmetries
Result (All =

0)

⟨3|μ(x,y)|0⟩ = ⟨E3u|E1u|A1g⟩ = ⟨E2g ⊕ E4g⟩

⟨m + 3odd|μ(x,y)|meven⟩ = ⟨E(m+3)u|E1u|Emg⟩ = ⟨E(m+3)u|
E(m+1)u ⊕
E(m−1)u⟩

⟨m + 3even|μ(x,y)|modd⟩ = ⟨E(m+3)g|E1u|Emu⟩ = ⟨E(m+3)g|
E(m+1)g ⊕
E(m−1)g⟩

Table 6. Analysis Showing That Rayleigh Scattering Δm = 0
Is Allowed by Symmetry

Transition Symmetries
Result

(All ≠ 0)

⟨0|α|0⟩ = ⟨A1g|A1g ⊕ E1g ⊕ E2g|A1g⟩ = ⟨A1g ⊕
E1g ⊕
E2g⟩

⟨meven|α|meven⟩ = ⟨Emg|A1g ⊕ E1g ⊕ E2g|Emg⟩ = ⟨A1g ⊕
...⟩

⟨modd|α|modd⟩ = ⟨Emu|A1g ⊕ E1g ⊕ E2g|Emu⟩ = ⟨A1g ⊕
...⟩
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problems is a good way to convince them of the value of
symmetry in the prediction of the selection rules of
spectroscopic phenomena. This article presents symmetry
arguments to derive the rotational selection rules so that
symmetry can be used for all of the standard 1D systems.
By associating the rotational symmetry of the PR problem

with the D∞h character table and assigning the wave functions
to irreducible representations, the direct product table may be
utilized to compute the symmetry of the TDM integrand and
the nonzero behavior of all possible TDM integrals. As a result,
the selection rules for Rayleigh scattering (Δm = 0), direct
absorption and emission (Δm = ±1), and Raman scattering
(Δm = ±2) were derived for the 1DPR system.
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Table 7. Analysis Showing That Raman Scattering Δm = ±2 Is Allowed by Symmetry

Transition Symmetries Result (All ≠ 0)

⟨2|α|0⟩ = ⟨E2g|A1g ⊕ E1g ⊕ E2g|A1g⟩ = ⟨A1g ⊕ ...⟩
⟨m + 2even|α|meven⟩ = ⟨E(m+2)g|A1g ⊕ E1g ⊕ E2g|Emg⟩ = ⟨A1g ⊕ ...⟩
⟨m + 2odd|α|modd⟩ = ⟨E(m+2)u|A1g ⊕ E1g ⊕ E2g|Emu⟩ = ⟨A1g ⊕ ...⟩

Table 8. Analysis Showing That Raman Scattering with Δm = ±4 Is Forbidden by Symmetry

Transition Symmetries Result (All = 0)

⟨4|α|0⟩ = ⟨E4g|A1g ⊕ E1g ⊕ E2g|A1g⟩ = ⟨E2g ⊕ E3g ⊕ E4g ⊕ E5g ⊕ E6g⟩

⟨m + 4even|α|meven⟩ = ⟨E(m+4)g|A1g ⊕ E1g ⊕ E2g|Emg⟩ = ⟨E(m+4)g|E(m+2)g ⊕ ...⟩
⟨m + 4odd|α|modd⟩ = ⟨E(m+4)u|A1g ⊕ E1g ⊕ E2g|Emu⟩ = ⟨E(m+4)u|E(m+2)u ⊕ ...⟩
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