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ABSTRACT: A high-school third-year or undergraduate first-semester general
chemistry laboratory experiment introducing simple-cubic, face-centered cubic,
body-centered cubic, and hexagonal closest packing unit cells is presented.
Latex balls and acrylic resin plates are employed to make each atomic arrange-
ment. The volume of the vacant space in each cell is measured by weighing
water poured into the unit cell model, and the packing efficiency of each unit is
obtained from the volume of vacant space. The observed values are compared
with the theoretical calculations. Students can easily understand experimentally
and theoretically that the packing efficiency of the face-centered cubic is the
same as that of the hexagonal closest packing and significantly greater than that
of the body-centered cubic. Moreover, they can understand the number of the
neighboring atoms for any atom (coordination number) in each cell.
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It is well-known that most metallic elements crystallize in
face-centered cubic, hexagonal closest packing, or body-

centered cubic lattices at room temperature (see Table 1,
Supporting Information).1 The reason such lattice structures
are favorable is explained by the packing efficiency of the struc-
tures. It seems interesting for students to examine the packing
efficiencies of various types of lattice structures experimentally
and theoretically. The crystal lattice models in classroom
demonstrations have been proposed.2−10 Commercial display
models are also available through companies such as Carolina
Biological Supply Company and Indigo Instruments in the
United States and Maruzen Company and Kenis Co. Ltd. in
Japan.11 Although these models are very convenient to show
the crystalline lattice in the classroom, it is difficult to under-
stand the concepts of the unit cell, atomic arrangement, and
coordination number of atoms using the space-filling-type
models; on the other hand, the concepts of closest packing and
packing efficiency in the lattice structures are hard to under-
stand using the ball-and-stick type models.
A new laboratory experiment is presented that emphasizes

not only the packing arrangement and the packing efficiency,
but also the number of atoms and the coordination number
of simple cubic, face-centered cubic, body-centered cubic, and
hexagonal closest-packing lattices using latex balls and acrylic
resin plates. A merit to using the latex ball and transparent
acrylic plate is that it is easy to understand how many balls and
which portion of the balls are included in a unit cell because
students cut the balls to add them to the transparent unit cell
box. The latex spherical balls of various colors and sizes known
as “Super Balls” are very cheap and easily cut with a knife, as
shown in Figure 1.

The 36 mm balls are easier for handling than those of other
sizes. The transparent acrylic resin plates with a thickness of
2 mm are stuck together with an adhesive to make the unit
cells. It is necessary for the acrylic resin unit cell to hold water.
The structures in the unit cells of simple cubic, face-centered
cubic, body-centered cubic, and the hexagonal closest packing
are made using the colored balls. Each unit cell structure is
made with the parts of balls and is inserted in the acrylic resin
unit cell. The number of balls and the packing arrangement in a
unit cell can be easily understood because the unit cell wall is
transparent. Water is poured into each unit cell, and the vacant
space in the void of the balls is calculated from the volume of
water added to the void. The packing efficiency of each lattice is
easily obtained from the ratio of the volume of water in the void
to the whole volume of the unit cell. Then the experimental
value is compared with the corresponding one obtained by the

Figure 1. A latex ball is cut with a knife. It is necessary to draw a circle
on the surface of the ball before cutting.
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theoretical calculation. Students can easily understand the pack-
ing arrangement, the number of atoms in a unit cell, and the
packing efficiency after the experiment.

■ EXPERIMENTAL PROCEDURE

Preliminary Experiment of Simple Cubic Lattice

Spherical balls and acrylic resin plates were purchased from
SankeiGom Co. Ltd. and Sakura-Jushi Co. Ltd., respectively.12

For the preliminary experiment, a simple cubic lattice structure
in Figure 2, panel a was made. All the balls (atoms) are aligned

linearly along the three rectangular axes. An open-topped cubic
box with an inside length of 36 mm is made, and a ball is in-
serted in the box as shown in Figure 2, panel b. Because the
origin of the unit cell is usually taken at a center of atom, it is
necessary to slide the origin of the box at the center of a ball,
which is shown in Figure 2, panel c. This means that all eight
corners of the box are occupied by one-eighth of a ball.
To estimate the volume of the vacant space in the cell, the

weights of the box are measured at the following four condi-
tions: the vacant box, M1; the box full of water, M2; the box
with a ball, M3; and the box with a ball and full of water, M4.
Assuming the density of water is 1.0 g cm−3, the packing effici-
ency, PE, is obtained as follows:
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To examine whether the packing efficiency is changed when
the origin of the unit cell is shifted in the lattice structure,
the weights of M3 and M4 of the model in Figure 2, panel c
are measured. It is made clear that the M3 and M4 values in
Figure 2, panel c are the same as the corresponding ones in
Figure 2, panel b. Instructions on how to make the models in
Figure 2 and the models shown in the following sections are
explained in detail in the Supporting Information.
Stacking Models of Two Closest Packings

A hexagonally packed layer as shown in Figure 3, panel a. There
are two types of voids between the three balls, A and B, if a
three-fold rotation axis passing through a central ball is consi-
dered. To make the hexagonal closest packing (hcp), the
second layer with blue balls is placed on the first layer, with

each ball of the second layer situated on the hollow space, A, of
the first layer. Then, the third layer is piled up on the second
layer in the same way as that of the second layer, so that each
ball of the third layer is directly above a ball in the first layer, as
shown in Figure 3, panel b.
For the face-centered cubic (fcc) structure, the packing mode

of the first and second layers is the same as that of the hcp
structure. The yellow third layer is placed on top, such that
each ball of the third layer is not situated directly above a ball in
the first layer but on the hollow B of the first layer, then a
fourth layer is piled up just above the balls in the first layer, as
shown in Figure 4, panel a. To understand that the packing

makes a cubic lattice, the 14 balls, which are composed of one
(orange) from the first layer, six (blue) from the second layer,
six (yellow) from the third layer, and one (orange) from the
fourth layer, are picked up from the layered structure in Figure 4,
panel a, as shown in Figure 4, panel b. The cubic cell is drawn
with red lines. It is easy to understand that the eight balls at the
corners (two orange, three yellow, and three blue balls) and six
balls at the center of the six faces (three yellow and three blue
balls) make a unit cell of the face-centered cubic lattice.
Face-Centered Cubic Closest Packing

Considering the packing mode of the fcc structure shown in
Figure 4, panel b, the unit cell length can be easily deduced
to √2 × 2r, where r is the radius of a ball. There is an eighth
ball at each cubic corner and a hemisphere ball at each face center
in the fcc structure. This means that there are four balls in the
unit cell because there is a total of one ball at the eight corners
and a total of three balls at the centers of six faces. A cubic box

Figure 2. (a) Simple cubic lattice structure and its unit cell (b) with a
ball in the cell and (c) with the origin at the center of the ball.

Figure 3. (a) A hexagonally packed layer and (b) three layers are piled
to form hexagonal closest packing.

Figure 4. The (a) piled-up fourth layers, (b) fcc cubic lattice structure,
and (c) a unit cell.
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with the edge length of √2 × 2r was made with acrylic resin
plates. The parts of the balls were inserted in the box as shown
in Figure 4, panel c. The packing efficiency (PE) of the fcc cell
is estimated in the same way as that of the simple cubic cell.

Hexagonal Closest Packing

The packing mode of the hexagonal closest packing (hcp)
structure is shown in Figure 3, panel b. Although the unit
cell should be taken as a minimum repeating unit, that is, a
rhombus unit cell (red color), as shown in Figure 5, panel a, it

is better to make a hexagonal unit (orange color) composed of
three rhombus unit cells than to prepare a rhombus regular cell
because it is easier for students to understand the hexagonal
closest packing. The projection of the hcp structure along the
hexagonal axis is shown in Figure 5, panel b. There are three
rhombus unit cells related by a three-fold axis in a hexagonal
unit, which is drawn with orange lines. The gray balls in the first
and third layers are completely overlapped, and the blue balls in
the second layer are situated on the hollows A of the first layer.
The height of the hexagonal cell is 2√(8/3)r because three
balls of the first layer and a ball of the second layer make a
tetrahedron with the edge length of 2r; the distance between
the top and the base plane of the tetrahedron is √(8/3)r. It is
important to count the number of the balls in the hexagonal
unit. From the first and third layers, there are two hemispheres
at the centers of the hexagons and 12 parts of a sixth of the
ball at the corners. This indicates that three balls are included in
the hexagonal unit from the first and third layers. Although
small parts of the three balls in the second layer are outside of
the hexagonal unit, which is indicated as the green-colored
areas in Figure 5, panel b, the same portions of the neigh-
boring balls are included in the unit as shown in Figure 5, panel c.
This means a total of six balls are included in the hexagonal
unit.
The hexagonal unit of the hcp lattice is obtained as shown in

Figure 5, panel d. The PE value of the hcp cell is measured in
the same way as that of the simple cubic cell. It is very
important to examine that the PE value of the hcp cell is the
same as that of fcc within experimental error.

Body-Centered Cubic Packing

Another crystal structure observed in metals is the body-
centered cubic (bcc) structure. Each ball (atom) is surrounded
by eight balls (atoms) in the arrangement. The unit cell length
is (4/√3)r. An eighth ball is fixed at each cubic corner, and a
spherical ball is set in the center of the cube as shown in Figure 6.
There are two balls in the unit cell. The PE value is also obtained.

From the above experiments, students can understand the
structures of simple cubic, face-centered cubic, hexagonal closest
packing, and body-centered cubic lattices. Moreover, they easily
understand how many balls are included in the unit cell of each
structure. They can also understand that the PE values of the hcp
and fcc structures are the same within experimental error and
that the PE of the body-centered cubic is smaller than those of
hcp and fcc. Moreover, the PE value of the simple cubic is too
small to be observed in usual metal structures.13

■ HAZARDS
Latex balls and acrylic resin plates are commonly used materials
in hobby, but caution should be taken by those who are allergic
to latex. A knife is usually used to cut the balls.

■ THEORETICAL CALCULATIONS
To examine the experimental results, the theoretical PE values
are calculated by students themselves using the following
formula:

= ×PE
total volume of included balls

volume of a unit-cell
100

(2)

For the simple cubic structure, the volume of the box is 8r3

because the edge length of the cubic box is 2r. There is a ball in
the box:

π π= × = × ≈PE
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For the fcc structure, the volume of the unit cell is 16(√2)r3

because the edge length of the cubic cell is 2√2r. There are
four balls in the unit cell. It is important for students to un-
derstand that the PE value is independent of the radius of the
ball because the term r3 disappears in the formula of eq 3:
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Figure 5. (a) The rhombus unit cell and hexagonal unit, (b) projection
of the hcp structure viewed along the hexagonal axis, (c) packing mode
of the second layer in the hexagonal unit, and (d) the hcp structure in
a hexagonal unit.

Figure 6. Unit cell structure of the bcc structure.
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For the hcp structure, the hexagonal unit has a volume of
{6(1/2)(2r)(√3r)} × {2(√(8/3)r) = 24√2r3. There are six
balls in the unit:

π π
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The PE value of the hcp structure is exactly the same as that of
the fcc structure.
For the bcc cell, the volume of the unit cell is (64/3√3)r3

because the cell length is (4/√3)r. There are two balls in the
unit cell:
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It is important to know that the PE value of the bcc cell is
smaller than those of the hcp and fcc cells, but significantly
greater than that of the simple cubic cell.
Experimental Results in the High School Classroom

The above experiment was conducted in a classroom in the
attached Ehime University Senior High School: 12 second-year
students took part in the experiment. They were divided into
six groups. The students received a 50 min lesson about the
crystal packing and then took a test. The question topics were
as follows:

1. Number of atoms in each unit cell of the fcc, hcp, and
bcc structures

2. Atomic arrangement of the two closest packings
3. Packing efficiency
4. Coordination number of each lattice structure

The averaged experimental and theoretical values are in good
agreement with each other. The experimental data obtained
by the six groups clearly indicated that the PE value of the fcc
cell is significantly greater than that of the bcc cell, but is
insignificantly different from that of the hcp cell.
After the experiment (about 100 min), the same test was

taken. As shown in the third column of Table 1, the percentage
of correct answers was almost 100%. Only one student had
difficulty understanding the face-centered cubic lattice shown in
Figure 4, panel b.
The measurement to obtain the PE values was performed

three times for each cell of hcp, fcc, and bcc structures. The
averaged experimental and theoretical PE values and their
relative errors are reported in Table 2.

■ DISCUSSION
A latex ball costs twenty-one cents, and a 45 cm × 30 cm acrylic
resin plate is about $5.00 (100 Japanese yen = 1 U.S. dollar).
The cost is very low. Because five different colors are effectively
used in the different positions in each model, it will be easier to
understand the atomic arrangement in the crystal structures.

The unit cell box made with acrylic plates should be kept after
the experiment and may be reused if there remains insufficient
time for the experiment.
As an extension to this experiment, students performed an

experiment to measure the density of various metals. If the
Avogadro number, atomic weight, and lattice type of each metal
were taken from the textbook, the students can easily calculate
the unit cell dimensions and the atomic radius using the density
of each metal.14 Various packing modes of atoms in three-
dimensional structures and the void space between atoms are
important concepts to help with the understanding of the chemical
properties. This experiment will be a first step to understanding
the nature of materials on the basis of atomic arrangement.

■ ASSOCIATED CONTENT
*S Supporting Information

A table of stable structures of various metal elements at room
temperature and how to make the models of the simple cubic,
face-centered cubic, body-centered cubic, and hexagonal closed
packing structures. This material is available via the Internet at
http://pubs.acs.org.
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