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ABSTRACT

Structure-Based Virtual Screening (SBVS) campaigns employing Protein-Ligand Interaction Fingerprints (PLIF)
identification have served as a powerful strategy in fragments and ligands identification, both retro- and
prospectively. Most of the SBVS campaigns employed PLIF by comparing them to a reference PLIF to calculate the
Tanimoto-coefficient. Since it was a reference-dependent approach, it could lead to a very different discovery path if
a different reference was used. In this article, a reference-independent approach, i.e. decision trees construction
using docking scores and PLIF bitstrings as the descriptors to increase the predictive ability of the SBVS campaigns
in the identification of ligands for cyclooxygenase-2 is presented. The results showed that the binary Quantitative-
Structure Activity Relationship (QSAR) analysis could significantly increase the predictive ability of the SBVS
campaign. Moreover, the selected decision tree could also pinpoint the molecular determinants of the ligands
binding to cyclooxygenase-2.

Keywords: Binary QSAR; decision tree; Protein-Ligand Interaction Fingerprints (PLIF); Structure-Based Virtual
Screening (SBVS)

ABSTRAK

Penapisan Virtual Berbasis Struktur (PVBS) dengan memanfaatkan identifikasi Sidik jari Interaksi Protein-Ligan
(SIPL) telah terbukti sebagai strategi yang jitu untuk mengidentifikasi fragmen maupun ligan baik secara retrospektif
maupun prospektif. Sebagian besar PVBS menggunakan SIPL dengan membandingkan pada SIPL referensi untuk
mendapatkan nilai Tanimoto-coeficient. Karena metode ini bergantung pada referensi yang digunakan maka
penggunaan referensi yang berbeda dapat menghasilkan hasil yang berbeda pula. Di artikel ini disajikan
penggunaan SIPL sebagai deskriptor dalam konstruksi pohon keputusan untuk meningkatkan kemampuan PVBS
dalam mengidentifikasi ligan pada enzim siklooksigenase-2. Hasil penelitian ini menunjukkan bahwa analisis
Hubungan Kuantitatif Struktur-Aktivitas (HKSA) biner ini mampu meningkatkan kemampuan prediksi PVBS secara
signifikan. Pohon keputusan hasil penelitian ini juga terbukti mampu menunjukkan determinan molekuler pada ikatan
ligan dengan enzim siklooksigenase-2.

Kata Kunci: HKSA biner; pohon keputusan; Sidik jari Interaksi Protein-Ligan (SIPL); Penapisan Virtual Berbasis
Struktur (PVBS)

INTRODUCTION

The development of methods and computer
applications to identify and compare Protein-Ligand
Interaction Fingerprints (PLIF) [1-5] and its variances
has been of considerable interest since employing such
fingerprints was a promising strategy to leverage the
wealth of generated data in rational drug design [6].
Together with Structural Interaction Fingerprint (SIFt)
and molecular interaction fingerprinting [6], PLIF was

categorized as binding site-focused interaction
fingerprinting methods [2]. Mainly for docking purposes,
molecular interaction fingerprinting featuring strong and
weak hydrogen bonds, ionic and hydrophobic
interactions, π-stacking as well as π-cation interactions 
and metal complexes was developed in 2007 [1-2].
Inspired by this molecular interaction fingerprinting [1],
our research group developed a Python
implementation of PLIF featuring hydrogen bonds, ionic
and hydrophobic interactions and π-stacking under the 
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name PyPLIF [4-5]. Molecular interaction fingerprinting
[1] has been expanded recently by encoding the patterns
of protein−ligand interactions in fingerprints and graphs 
that could be applied for post-processing docking poses
and search for plausible bioisosteric scaffolds [2-3].

Structure-Based Virtual Screening (SBVS)
campaigns to discover novel fragments and ligands have
obtained advantages in employing PLIF identifications
and comparisons for post-processing docking poses
[1,7-13]. Rescoring the results of the molecular docking
simulations by calculating Tanimoto-coefficient similarity
with a PLIF reference (Tc-PLIF) has been shown to
increase the predictive ability of several SBVS
campaigns [1,6,11-13] and to better re-dock small
molecules in their native poses [1,4,6] compared to
standard docking scores [2-3]. Notably, different PLIF
references could lead to very different paths of the
discoveries [12,14]. Interestingly, using interaction
fingerprints to filter desired docking poses and to
construct decision trees could increase the accuracy of
docking simulations [15]. Employing interaction
fingerprints as post docking descriptors, for example in
binary Quantitative Structure-Activity Relationship
(QSAR) analysis [16-17] to increase the predictive ability
of SBVS protocols is therefore attractive since this offers
opportunities to overcome one limitation of the available
methods: the dependence on the protein-ligand
structural complexes as the references [2,12,14]. Very
recently, systematic filtering on PLIF interaction bitstring
in retrospective SBVS campaigns targeting adrenergic
β2 receptor [18] and using decision trees by employing
Recursive Partitioning and Regression Tree (RPART)
package in R computational statistics software [19] in
retrospective SBVS campaigns targeting estrogen
receptor alpha [20] were reported to significantly
increase the predictive ability. Both are reference-
independent methods [18,20].

Targeting cyclooxygenase-2 (COX-2) is of interest
since the enzyme has been reported to play an
important role in inflammation processes [21-22]. The
emerging roles of the enzyme in cancer [13,23-24],
Alzheimer's disease, Parkinson's disease,
schizophrenia, major depression, ischemic brain injury
and diabetic peripheral nephropathy have also been
reported [22]. The availability of the crystal structures
[25-26] and a database containing COX-2 ligands and
their decoys [27-28] has opened possibilities to perform
crystal SBVS campaigns to identify COX-2 ligands [29-
31]. In this article, the application of binary QSAR
analysis using decision trees constructions employing
PLIF bitstrings resulted from rescoring docking
simulations as descriptors to increase the predictive
ability of SBVS campaigns to identify potent ligands for
COX-2 [27] is presented. Binary QSAR approaches,
which encode the biological activities as active (1) or

inactive/decoy (0) instead of using the actual values
[17] were used since several comprehensive studies
have reported that there was no correlation between
docking scores to biological activity values [27,32-33].
Virtual screening campaigns to distinguish between
potent COX-2 ligands and their decoys [27] by
employing molecular docking software PLANTS1.2 [34-
35] as the backbone software followed by the PLIF
identification software PyPLIF [5] for rescoring the
docking results have therefore been performed. The
interaction fingerprints and the ChemPLP scores
resulted from the SBVS campaigns were subsequently
used as descriptors to construct decision trees [19].
This binary QSAR approach resulted in significant
increases of the enrichment values compared to the
use of standard docking score ChemPLP resulted from
the docking software PLANTS1.2 [34]. During the
review process of this article, the SBVS protocol was
appended and retrospectively validated to be able to
identify marginal COX-2 ligands [36].

COMPUTATIONAL METHOD

Materials

The crystal structure of COX-2 obtained from the
Protein Data Bank (PDB) with PDB id of 3LN1 [25] was
used as the reference structure. Potent ligands (435)
and decoys (23,150) for COX-2 from DUD-E [27] were
employed as the test compounds to perform
retrospective SBVS.

Computation Details

All calculations and computational simulations
were performed on a Linux (Ubuntu 10.04 LTS Lucid
Lynx) machine with Intel

(R)
Xeon

(R)
CPU E3-1220 as the

processors (Quad-Core @ 3.10 GHz) and 8.00 GB of
RAM. Computational medicinal chemistry applications
employed in this research were SPORES [37],
PLANTS1.2 [34-35], Open Babel 2.2.3 [38], and
PyPLIF 0.1.1 [5]. The packages “rpart” [19] and “caret”
[39] were employed in the binary QSAR analysis using
R computational statistics software version 3.2.1 (R-
3.2.1) [40].

Procedure

Retrospective SBVS targeting COX-2
The previously published procedure by Istyastono

and Setyaningsih [18] was adopted to perform
retrospective SBVS to identify potent COX-2 ligands
among their decoys [27]. The crystal structure of COX-
2 with the PDB id of 3LN1 [25] was downloaded from
the PDB website (http://www.rcsb.org/pdb/explore.do?
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structureId=3LN1). Only chain A from the downloaded
crystal structure was used further [27]. The module
splitpdb in SPORES was used to split the receptor, the
co-crystal ligand, and the water molecules discovered in
the pdb file and to subsequently convert the files into
mol2 files ready to be employed in molecular docking
simulation employing PLANTS1.2 docking software. This
procedure produced the virtual target protein.mol2 and
the co-crystal ligand ligand_CEL682_0.mol2.

Known COX-2 active ligands and their decoys were
downloaded in their SMILES format from DUD-E [27].
There were 435 ligands and 23,150 decoys downloaded
and stored locally as actives_final.ism and
decoys_final.ism, respectively. Each compound in the
files was then subjected to Open Babel 2.2.3 conversion
software to be converted in its three dimensional (3D)
format at pH 7.4 as a mol2 file. The settypes module in
SPORES was subsequently employed to properly check
and assign the mol2 file into a proper mol2 file ready to
dock by using PLANTS1.2 docking software. For each
compound, 50 poses were calculated and scored by the
ChemPLP scoring function at speed setting 2. The
binding pocket of COX-2 was defined by the coordinates
of the centre of the reference ligand and a radius of 5 Å
(which is the maximum distance from the centre defined
by a 5 Å radius around the reference ligand). All other
options of PLANTS1.2 were left at their default setting
[4]. Every compound was virtually screened five times
independently [14].

The co-crystal ligand binding mode in the COX-2
crystal structure was used to generate the reference
PLIF by using PyPLIF. Seven different interaction types
(negatively charged, positively charged, hydrogen bond
(H-bond) acceptor, H-bond donor, aromatic face-to-
edge, aromatic face-to-face, and hydrophobic
interaction) were used to define the PLIF [2,5]. The
cavity used for the PLIF analysis is consisted of a set of
residues in the binding pocket of COX-2 defined in the
previous paragraph. A unique subset of protein
coordinates with rotated hydroxyl hydrogen atoms were
used to define the PLIF for each PLANTS docking pose
[4,18].

Predictive ability assessment of the SBVS
The docking pose with the best ChemPLP score

was selected for each virtually screened compound. The
dataset was subsequently ranked based on the
ChemPLP score. Ligands were encoded as positive (P)
and while decoys were encoded as negative (N). From
the ranked database, only compounds located above the
N compound number 231 (circa 1% of all decoys) were
selected. The remaining compounds were then predicted
as positive (P), while the others were predicted as
negative (N). The confusion matrix, i.e. consisted of true
positives (TP), true negatives (TN), false positives (FP),

and false negatives (FN) was then constructed [16,39].
The enrichment factor (EF=(TP/P)/(FP/N)) value [11]
was calculated and compared to the value of the
reference protocol (EF = 12.9) [27]. At 95% level of
confidence, the confidence interval (CI) of the accuracy
(ACC) value and the p-value to examine whether the
accuracy was higher than the “no information rate” (the
largest class percentage in the data) were calculated
using confusionMatrix module in the “caret” package of
R-3.2.1 [39] to examine the significance of the ACC
value.

Decision trees construction and analysis
The ranked dataset resulted in subsection

Predictive Ability Assessment of the SBVS was
subjected to the binary QSAR analysis by employing
the ChemPLP scores and PLIF bitstrings as the
descriptors. The decision trees were constructed by
employing the “rpart” package in R-3.2.1 [19,40]. The
best decision tree was the one with the lowest cross-
validated prediction error (CV-err). By using this best
decision tree, a new confusion matrix [16] was
constructed and the statistical significances as
presented in subsection Predictive Ability Assessment
of the SBVS were calculated for the dataset.
McNemar’s tests were subsequently performed to
compare the quality of the decision tree compared to
the standard SBVS protocol to identify COX-2 ligands.

RESULT AND DISCUSSION

Quality Assessment of Standard Retrospective
SBVS Campaigns Targeting COX-2

The standard retrospective SBVS campaigns
using PLANTS1.2 followed by PyPLIF [18,41] targeting
COX-2 [25] using ligands and decoys from DUD-E [27]
resulted in 3,536,850 docking poses. There were 900
docking poses missing because the docking software
could not simulate 6 out of 23,150 decoys. This
indicates that the input preparation could already assist
the reduction of the number of decoys in the virtual
screening processes. By using ChemPLP as the
scoring functions to select and rank the best poses
there were 19 ligands found in the dataset containing
231 top ranked decoys. The EF value of the dataset
was thus 4.377 resulted from 19 TP and 231 FP. This
is unacceptable to perform further prospective virtual
screening [27-28]. This value was considered too low
compared to the EF value of the reference protocol (EF
= 12.9) [27]. Moreover, although the ACC value was
relatively high (0.973), but it was not significant
statistically compared to the “no information rate” (p-
value = 1) at the confidence level of 95% [39].
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Fig 1. The decision tree adopted from the best classification tree resulted from the RPART method (see Table 1)

Table 1. Decision trees resulted from employing RPART
method on the SBVS results to identify COX-2 ligands

No. CP
a)

CV-err
b)

CV-std
c)

1. 0.0471 1.0000 0.0475
2. 0.0414 0.9540 0.0464
3. 0.0345 0.8805 0.0446
4. 0.0184 0.7977 0.0425
5. 0.0107 0.7586 0.0415

6.
d)

0.0100 0.7586 0.0415
a)Complexity parameter of the decision tree; b)Cross-validated
prediction error; c)Cross-validated standard deviation; d)The
selected decision tree with the lowest CP, CV-err and the
lowest CV-std (see Fig. 1).

Table 2. Matrix for McNemar’s test
Standard SBVS

The Classification Tree
True False

True A = 22,902 B = 366
False C = 30 D = 281

The alternative standard docking score could be
used here was Tc-PLIF, which was reference and
binding pocket dependent [4-5]. The binding pocket
defined in this research consisted of 50 residues:
PRO71, VAL74, HIS75, LEU78, THR79, MET99,
VAL102, LEU103, ARG106, GLN178, PHE184,
PHE191, VAL330, ILE331, ASP333, TYR334, VAL335,
GLN336, HIS337, LEU338, SER339, GLY340, TYR341,

PHE343, LEU345, PHE367, LEU370, TYR371,
TRP373, VAL420, LEU493, ARG499, ALA502, ILE503,
PHE504, GLY505, GLU506, THR507, MET508,
VAL509, GLU510, LEU511, GLY512, ALA513,
PRO514, PHE515, SER516, LEU517, LYS518, and
LEU520. Therefore, since every residue produced 7
PLIF bitstrings, the SBVS campaigns resulted in
24,757,950 PLIF bitstrings in total. These bitstrings
served further as descriptors in the binary QSAR
analysis. Since the research presented in this article
aimed to develop a reference independent SBVS
protocol, the Tc-PLIF value was not considered further
to rank the dataset.

Quality Assessment on the SBVS followed by
Binary QSAR Analysis

Following the SBVS campaigns, binary QSAR
analysis by construction of decision trees was
performed using RPART method [19] and employing
the ChemPLP scores and PLIF bitstrings [20] of the
ranked datasets as the descriptors. The analysis
resulted in 6 decision trees (Table 1). The tree with
complexity parameter value of 0.010 was selected.
This best decision tree showed 11 splits (Fig. 1) with
CV-err value of 0.759 and cross-validated standard
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Table 3. Enrichment Factor (EF) values of some retrospective SBVS campaigns to identify potent COX-2 ligands
No. Publication by EF

Value
Number of

Ligands
Number of

Decoys
Description Reference

1. Huang et al., 2006 29.1 349 12491 EF maximum [28]
2. Kruger and Evers,

2010
14.0 50 950 The best EF at 1% ranked

database
[47]

3. Yuniarti et al., 2011 32.1 349 12491 EF maximum, using ARG513
as the interaction anchor

[31]

4. Mysinger et al., 2012 12.9 435 23150 EF at 1% ranked database [27]
5. Istyastono, 2016 44.8 1973 23150 EF of the optimized protocol [36]

error (CV-std) value of 0.041. The descriptors involved in
the decision tree were ChemPLP scores [34] and
bitstrings number 17 (aromatic interaction edge-to-face
to HIS75), 18 (hydrogen bond with HIS75 as the donor),
68 (hydrogen bond with GLN178 as the acceptor), 138
(hydrogen bond with LEU338 as the acceptor), 169
(hydrophobic interaction to LEU345), 197 (hydrophobic
interaction to TRP373), 218 (hydrophobic interaction to
ARG499) and 221 (hydrogen bond with ARG499 as the
donor). The confusion matrix resulted in 154 TP, 281
FN, 30 FP and 23120 TN. The EF and ACC values were
thus 273.166 and 0.987, respectively. Notably, the EF
value was substantially better compared to the reference
protocol (EF value = 12.9) [27] and the ACC value was
statistically higher compared to the “no information rate”
(p-value < 0.05) at the confidence level of 95% [39].

McNemar’s test [16] was performed to examine if
the classification tree could improve the SBVS predictive
ability compared to the standard SBVS protocol. It
requires numbers of compound predicted correctly in
both protocol (A), predicted correctly in protocol using
classification tree but predicted incorrectly in the
standard SBVS (B), predicted incorrectly in protocol
using classification tree but predicted correctly in the
standard SBVS (C), and predicted incorrectly in both
protocols (D) [16]. These numbers are presented in
Table 2. Resulted in McNemar’s chi-squared value of
283.4 (p-value < 0.05), the classification tree constructed
in this research was thus significantly better at the 95%
level of confidence than the standard SBVS protocol to
identify COX-2 ligands.

There are 4 branches to identify potent COX-2
ligands (Fig. 1): (i) First branch, which requires hydrogen
bond to ARG499, ChemPLP score of less than -98.23,
and aromatic interaction edge-to-face to HIS75; (ii)
Second branch, which requires hydrogen bond to
ARG499, hydrogen bond to HIS75, and ChemPLP score
of less than -82.33; (iii) Third branch, which requires
hydrogen bond to ARG499, aromatic interaction edge-to-
face to HIS75, and hydrophobic interactions to LEU345,
TRP373, and ARG499; and (iv) Fourth branch, which
requires hydrogen bonds to GLN178 and LEU338. The
first split involves a hydrogen bond interaction to
ARG499 (bitstring 221) indicates that this is an important

interaction and suggests also that ARG499, which
corresponds to ARG513 in the older numbering system
[25-26], is a molecular determinant in COX-2 ligand
binding [31,42-44]. Notably, three out of the branches
to identify ligands involve HIS75, which corresponds to
HIS90 in the older numbering system [25-26]. This is in
line with some previously published suggestions that
HIS75 is one of the molecular determinants in COX-2
ligand binding [25,45-46]. Interestingly, the fourth
branch requires hydrogen bond interactions to nonpolar
residues GLN178 (i.e. GLN192 in the older numbering
system [25-26]) and LEU338. Since the amino acids
act as the acceptor, the hydrogen bonds could only
interact to the carbonyl of the main chain of the
residues.

The decision tree could significantly increase the
predictive quality of the SBVS protocol [20]. This
increase could be achieved since it increased the TP
value from 19 to 154 and decreased the FP value from
231 to 30. In contrast with the high EF value (273.166),
the true positive rate (TP/P) value (0.354) was however
much lower compared to the false negative rate (FN/P)
value (0.646). Therefore, by using this protocol it is
highly recommended to further verify positive predicted
compounds using in vitro experiments. But, if the
protocol predicts a compound as inactive or decoy, the
compound still have possibilities to be developed
further by visual inspections on the best docking poses
and de novo compounds design guided by the decision
tree (Fig. 1) [12]. It is recommended to employ this
protocol to prospectively screen large datasets instead
of to perform in silico tests on small number of
compounds or even a single compound. Notably, a
compound is considered as active or ligand using the
protocol if the activity value (IC50, EC50, or Ki) is equal
or less than 1 µM [27]. Marginal active ligands with the
activity values of more than 1 µM are considered as
inactive or decoy [27,36].

In order to present the increase of the predictive
ability, EF values of some recently published SBVS
protocols to identify potent COX-2 ligands are
presented in Table 3. The EF value of the protocol
presented in this article (EF = 273.166) is significantly
higher compared to all SBVS protocols presented in
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Table 3. As mentioned previously, during the review
process of this article, an attempt to employ the protocol
presented here to identify marginal COX-2 ligands have
been performed and resulted in an acceptable but lower
EF value (SBVS protocol number 5 in Table 3) [36]
compared to the EF value presented here. Notably, the
SBVS protocol number 3 by Yuniarti et al. showed that
employing an interaction anchor could increase the
predictive quality [31]. This strategy is in line with the
identified molecular determinants of COX-2 ligands
binding (Fig. 1) and has also been suggested by
Istyastono [36].

CONCLUSION

The SBVS quality to identify COX-2 ligands could
be significantly increased by using the best decision tree
built by employing RPART method. The decision tree
employed further to pinpoint the molecular determinants
in COX-2 ligand binding and identified ARG499 and
HIS75 (i.e., ARG513 and HIS90, respectively) as the
molecular determinants.
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