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ABSTRACT: The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or
integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate
solution that converges uniformly to the exact solution in the case of zero, first, and second order kinetics. The approximate
solution is shown to have unequivocally the same form as the exact solution, except for an effective parametric rate constant that
turns into the actual rate constant of the process at the appropriate limit. The use of simple algebraic methods makes the analysis
elementary and its generalization to processes with fractional order kinetics straightforward. We discuss the educational value of
this approach while highlighting its use for introducing chemical kinetics and related topics to high school and first-year students.
Furthermore, instructors and students already familiar with the main results derived here will also benefit from this presentation
as it offers a different perspective on the solution of routinely found differential equations.
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■ INTRODUCTION

Chemistry education aimed at high school and first-year
students presents unique challenges for instructors. The
complexity of chemical processes is usually of such a
sophisticated nature that detailed and convincing arguments
have to be very often relegated or postponed to junior and
senior years of college. An understanding of several areas of
physical chemistry, for example, usually requires several
semesters of calculus and some knowledge of matrix algebra,
differential equations, and complex analysis.1−3 Yet, mathemat-
ical skills and logical thinking have been found to be among the
most significant factors affecting college chemistry perform-
ance.4,5

Chemical kinetics, in particular, deals with the problem of the
evolution in time of the concentration of a reactant (or
product), and this is typically described in terms of an ordinary
differential equation.1−3 The most commonly found kinetic
equations in a chemistry curriculum of high school and first
year of college have the form6,7

Δ
Δ

= − α

t
k

[A]
[A]

(1)

where k is the rate constant of the process. The parameter α in
this equation is called the order of the reaction, and in the
simplest scenarios it could be zero, one, or two. Reactions are
then said to be of zero order (α = 0), first order (α = 1), or
second order (α = 2). Some reactions however can exhibit a
fractional order kinetics, for example, the thermal decom-
position or pyrolysis of acetaldehyde is known to have α = 3/2
under certain circumstances, indicative of a complex reaction
mechanism associated with this process.2,8

The bracket notation [A] on the right-hand side of eq 1
represents the concentration of reactant A as a function of time,
and it is a shorthand version of the perhaps more appropriate
notation [A]t. The specific form in which the concentration of
reactant A depends on time is called the solution of the given

equation namely, [A] (or [A]t). The symbol Δ[A] on the left
hand side of the equation above expresses the change of
concentration exhibited by reactant A with time, i.e.,

Δ = −[A] [A] [A]t t2 1 (2)

Meanwhile, Δt = t2 − t1 represents the time interval during
which this concentration change takes place. When the time
interval Δt approaches zero, the finite difference relation in eq 2
above formally becomes a so-called ordinary dif ferential
equation.
While this description can be intuitively motivated, the

typical solution of the ensuing differential equation is not a
trivial exercise for someone with less than two semesters of
college calculus and some exposure to differential equations.
Indeed, separation of variables, integration on both sides, and
the theorem of existence and uniqueness of the solution of a
differential equation, while standard topics in junior and senior
years of college,1−3 are well beyond the comprehension of
nearly all high school and first-year students.
Therefore, in this work, we set the goal of analyzing the

solution of kinetic equations with the form specified by eq 1 for
zero, first, and second order without referencing any topic from
differential equations or the process of integration. We discuss a
systematic procedure that allows one to generate a discrete
(and generally approximate) version of the solution and
investigate analytically its uniform convergence to the exact
solution. The overall strategy therefore consists of transforming
the original difference problem stated in eq 1 into a limiting
exercise that requires simple algebraic manipulations. The
scheme discussed here is similar in spirit to the approach used
in numerical analysis when solving ordinary differential
equations in a computer.9,10 It is however different in practice
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because it does not rely on analyzing explicitly the limit when
the integration time step goes to zero as the route for
convergence to the exact solution. Instead, the approach
considered here is based on introducing a different para-
metrization amenable to straightforward analytical manipula-
tions. In this context, as the given parameter approaches
infinity, the concentration change (Δ[A]) and the time interval
(Δt) go simultaneously to zero as the exact analytic solution is
found. (It is worth noting that the generalization of this
protocol to arbitrary fractional orders is straightforward and is
presented in the Supporting Information where the connection
to the results obtained for the simplest cases is explained.)
The focus and relevance of the present discussion is 2-fold.

On the one hand, it suggests a strategy to rigorously introduce,
at an elementary level, important results regarding kinetic
processes that are of paramount significance in chemistry,
biochemistry, physics, and engineering. This can be particularly
impactful when employed at educational stages earlier than the
ones at which these topics are routinely presented under
current academic programs. High school and first-year students
in various disciplines, in particular, could benefit in notable
ways from this overall approach.
On the other hand, for instructors and students already

familiar with the results considered in this work, the discussion
herein will allow them to analyze and view the results from a
different perspective. This might, in turn, further enrich their
understanding, as well as the implications that derive from the
contrast between the arguments ordinarily given in this context
and the ones presented here. Students interested in the use of
numerical procedures for the solution of differential equations
and related matters may find this discussion specially
convenient as it connects, albeit in an elementary fashion,
with their everyday handling of numerical routines.
The paper is organized as follows. A detailed analysis of an

approximate solution to first order kinetics and its convergence
to the exact solution is first presented. This is followed by the
solution of the zero and second order kinetics processes
according to the same protocol, respectively. Finally, some
general conclusions are given regarding the overall strategy.

■ FIRST ORDER KINETICS

Approximate Solution

The equation we must solve, corresponding to a process with
first order kinetics, is

Δ
Δ

= −
t

k
[A]

[A]
(3)

as it results from eq 1 for the case when the parameter α equals
1. The rate expression in eq 3 indicates that the rate of change
of the concentration is proportional to the concentration itself.
The negative sign indicates that, as time progresses (Δt > 0),
the changes in the concentration must be negative (Δ[A] < 0),
implying that the concentration must decrease with time. Let us
then rewrite this equation as

Δ = − Δt
k

1
[A]

[A]
(4)

In this form, we will be able to estimate the amount of time
(Δt) required for the concentration to change from its initial
value, which from now on will be denoted by [A]0, to some
smaller value to be specified below.

Consider as Step 1 the time interval Δt in which the
concentration changes from [A]0 to [A]0/2. The change in
concentration is clearly given by

Δ = − = −[A]
[A]

2
[A]

[A]
2

0
0

0
(5)

We then estimate the value of the concentration by its
midpoint and find

= + =
⎛
⎝⎜

⎞
⎠⎟[A]

1
2

[A]
[A]

2
3
4

[A]0
0

0
(6)

Placing these two results in eq 4 we estimate the time interval
to be

Δ = − − =
⎛
⎝⎜

⎞
⎠⎟t

k k
1

(3[A] /4)
[A]

2
2

30

0

(7)

Consider now as Step 2 the time interval Δt in which the
concentration changes from [A]0/2 to [A]0/4. It is straightfor-
ward to verify that the change in concentration is −[A]0/4 and
the midpoint value is 3[A]0/8. The time interval is therefore
estimated as

Δ = − − =
⎛
⎝⎜

⎞
⎠⎟t

k k
1

(3[A] /8)
[A]

4
2

30

0

(8)

and is obviously the same than the one calculated in Step 1.
If one repeats this process a third time, while going from

[A]0/4 to [A]0/8 one would find once again that the time
interval is also Δt = 2/3k. The results obtained up to Step n are
collected in Table 1. The main feature is that the time interval
Δt remains constant in each step.

The results of Table 1 are represented graphically in Figure 1
and compared with the exact solution (discussed below).
Although all computed values fall slightly below the exact result,
it is clear from this graph that the protocol outlined here allows
us to anticipate, rather accurately, the general behavior of the
concentration as a function of time. Our plan now is to bring
the points closer together, and find the exact solution of the
problem in the limit in which the points are infinitely close.
The Exact Solution as a Limit

Before continuing forward, it is useful to recall the following
limit:11−14

− = =
→∞

−⎜ ⎟
⎛
⎝

⎞
⎠M

lim 1
1

e
1

2.7182...M

M
1

(9)

This limit plays a major role in the analysis below, and it is
further discussed in an elementary manner in the Supporting
Information (section A).

Table 1. First Order Kinetics

Step No. Δt [A]initial [A]final

1
k

2
3

[A]0
[A]

2
0

2
k

2
3

[A]
2

0 [A]
4

0

3
k

2
3

[A]
4

0 [A]
8

0

⋮ ⋮ ⋮ ⋮
n

k
2

3 −
[A]

2n
0
1

[A]
2n

0
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Consider the time interval Δt in which [A] changes from
[A]0 to [A]0(1 − 1/M). Note that if M equals 2, the
concentration changes to one-half of the initial value and that
calculation has already been done. So we imagine here that M is
a large number with which we can control how close are the
successive points of the function. In particular, it is clear that
the larger the value of M, the closer the values of the
concentration will be.
The change in concentration in this instance is

Δ = − − = −⎜ ⎟
⎛
⎝

⎞
⎠M M

[A] [A] 1
1

[A]
[A]

0 0
0

(10)

The value of the concentration can be estimated as before
through its midpoint, and this is

= + − = −⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

⎛
⎝

⎞
⎠M M

[A]
1
2

[A] [A] 1
1

1
1

2
[A]0 0 0

(11)

Then, the corresponding time interval is given by

Δ = − =
−

−
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t

k M M k M
1

1
1

2
1 1 11

1
2 (12)

If we now analyze the change of the concentration for the
second step, from [A]0(1 − 1/M) to [A]0(1 − 1/M)2, we will
find exactly the same result as in eq 12. In fact, it is
straightforward to verify that for any step n we will obtain this
same value of Δt. Thus, after n steps the concentration will be

= −⎜ ⎟
⎛
⎝

⎞
⎠M

[A] [A] 1
1 n

0 (13)

and since the time involved in the concentration change from
[A]0 to [A] is the sum of the n time intervals,

= Δ =
−

≈
( )

t n t
n

k M

n
kM1

2 (14)

where in the last step we used the fact that M is a very large
number.
Solving for n in this last expression and placing the result in

eq 13 we find

= −

= −

= −

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

M

M

[A] [A] 1
1

[A] 1
1

[A] e

kMt

M kt

kt

0

0

0 (15)

where the large M limit of eq 9 has been used. The result in eq
15 is in fact the exact analytic solution of the first order kinetics.
A comparison between the exact solution and the values
estimated earlier appears in Figure 1.

Analysis of the Convergence

Knowing the exact solution for the process, it is a simple matter
to compute the exact time required for the concentration to
reach one-half of its initial value, or half-life. The result is simply

=t
k

ln(2)
1/2 (16)

The estimate found earlier for this quantity, Δt = 2/3k (see
Table 1), can be compared with t1/2 as

Δ
= =

t
t

3
2

ln(2) 1.0397...1/2

(17)

which shows that Δt < t1/2. This is due to the fact that the
exponential is a concave function and our midpoint evaluation
of the concentration always overestimates the actual value of
the function. As a result, the value of Δt computed according to
eq 4 will always be smaller than the actual time associated with
any given concentration change.
A crucial feature shared by the exact and approximate

solutions is that the half-life is independent of the
concentration. This means that the parametric solution can
be cast in the form of an exponential decay in time with an
effective rate constant which we can denote as κM. Indeed, using
eqs 13 and 14, we can write

= − = κ
−

−⎜ ⎟
⎛
⎝

⎞
⎠M

[A] [A] 1
1

[A] e
kt M

t
0

( 1
2 )

0
M

(18)

which implies that the parametric constant κM and the constant
k are related by the exact expression

κ = − +
−

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠k M

M
1
2

ln 1
1

1M (19)

Note that the discrepancy between κM and k is a consequence
of taking the rate equation in eq 3 to be valid for arbitrary
values of Δt. However, since we know that eq 3 is only
meaningful at very small Δt, and according to eq 12 this occurs
at large values of M, it is precisely at this limit that the effective
constant becomes the actual rate constant.
This last expression in eq 19 generalizes the relation between

the actual half-life of the process t1/2 and the half-life associated
with the approximate solution corresponding to a given value of
M. Specifically, for the case M = 2, this expression reduces to

κ
=

k
3
2

ln(2)2
(20)

in complete agreement with eq 17. So, for example, all the
concentration values in Table 1 belong to the approximate
solution

Figure 1. Values of [A] at steps n = 1, 2, 3, and 4 as indicated in Table
1 as a function of time. The exact solution, given by eq 15, is also
included for comparison. Note that all computed values of [A] belong
to the approximate solution in eq 20, and this is represented here by a
dashed line.
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= −[A] [A] e kt
0

(ln(2 2 ))
(21)

and fall slightly below the exact values as illustrated graphically
in Figure 1. The practical advantage of writing the approximate
solution in this manner is that t is not restricted to multiples of
Δt; it is instead a continuous variable that can be evaluated to
yield any concentration value.
The limiting process M → ∞ has, in summary, two effects.

First, it brings the concentration points closer together, as Δt
approaches zero in the manner prescribed by eq 12. Second, it
decreases the effective constant κM to match the actual value k
according to the form indicated by eq 19. It is useful to point
out that the seemingly inconspicuous term uniform convergence
mentioned in the Introduction entails some subtle aspects. It
means that it is possible to find a value of M for which all the
corresponding approximate concentrations differ from their
limiting value by a (positive) quantity that can be made
arbitrarily small. As a result, the parameter M characterizes
through a single value the simultaneous convergence of all
approximate concentration values at once. This fact is analyzed
in more detail in the Supporting Information (section B).

■ ZERO ORDER KINETICS
The solution of the zero order kinetics is obviously very simple,
however we review it here using the approach outlined in the
preceding section. The resulting analysis will turn out to be
rather informative as we compare it with the solution of the first
order and second order kinetic equations.
The kinetic equation for zero order must be first written in

the form

Δ = − Δ
t

k
[A]

(22)

It is straightforward to find the time interval needed for the
concentration to successively decrease to half of its initial value,
and the results obtained appear in Table 2. The time intervals

not only depend on the initial concentration but in fact become
smaller as the number of steps increases. Indeed, the time
interval associated with the nth step is

Δ = Δ− −t t2n
n( 1)

1 (23)

where Δt1 = [A]0/2k is the time interval associated with the
first step. (Note that since the time interval is different for each
step, a subindex n has been added rendering the notation Δtn,
with n = 1, 2, 3, ....)
The values of the concentration after each time interval are

represented graphically in Figure 2 and compared with the
exact solution (derived below). An important distinction in
relation to the analysis in the previous section is that all the
estimates are here exact. This is obviously a consequence of the

fact that Δtn only depends on Δ[A] so there is not inherent
estimation performed; see eq 22. As a result, each time interval
Δtn is exactly equal to the half-life t1/2 associated with each step
n as indicated in Figure 2.
We now analyze the process, used in the previous section, of

taking the limit M→ ∞. For convenience, we introduce the M-
dependent factor

= −P
M

1
1

(24)

which represents the fraction of the original concentration
remaining after a given time interval Δtn. Since we are
interested in large values of M, it is quite general to consider 1
< M ≤ ∞, which implies 0 < P ≤ 1. It is clear in particular that,
as M approaches infinity, the factor P approaches one.
For the case in which the concentration changes between

[A]0 and [A]0(1 − 1/M), it is straightforward to verify that the
time interval is

Δ = − −t
k

P
[A]

( 1)1
0

(25)

For the next step, involving a concentration change from
[A]0(1 − 1/M) to [A]0(1 − 1/M)2, we find

Δ = − −t
k

P P
[A]

( )2
0 2

(26)

By continuing this exercise, one finds that the time interval
associated with the nth step is

Δ = − − −t
k

P P
[A]

( )n
n n0 1

(27)

Thus, after n steps the overall concentration change is

= − =⎜ ⎟
⎛
⎝

⎞
⎠M

P[A] [A] 1
1

[A]
n

n
0 0 (28)

And this occurs during the time

∑ ∑= Δ = − − = − −
= =

−t t
k

P P
k

P
[A]

( )
[A]

( 1)
l

n

l
l

n
l l n

1

0

1

1 0

(29)

Combining these last two equations, we find the expected
result:

Table 2. Zero Order Kinetics

Step No. Δtn [A]initial [A]final

1
k

[A]
2

0 [A]0
[A]

2
0

2
k

[A]
4

0 [A]
2

0 [A]
4

0

3
k

[A]
8

0 [A]
4

0 [A]
8

0

⋮ ⋮ ⋮ ⋮
n

k
[A]
2n

0
−

[A]

2n
0
1

[A]
2n

0

Figure 2. Values of [A] at steps n = 1, 2, and 3 as indicated in Table 2.
The exact solution corresponding to zero order kinetics is also
included. Note that in this case the estimated time interval equals the
half-life, i.e., Δtn = t1/2.
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= − kt[A] [A]0 (30)

The result is expected because the only function that changes in
constant proportion to changes of its argument is the straight
line. And since the proportionality constant is −k, one
anticipates this to be its slope.
It is interesting to point out that in obtaining eq 30 there

seems to be no need for a limit to be evaluated. This is because
all concentration points generated for any given choice of the
parameter M are exact. However, for t to become a continuous
variable, the limit M → ∞ must be formally taken; see eq 29.
This can be rigorously established by verifying that Δtn goes to
zero for all n when M goes to infinity.
Solving for Pn in eq 29 and placing the result in eq 27 we find

Δ =
−

−
⎛
⎝⎜

⎞
⎠⎟t

M k
t

1
1

[A]
n

0

(31)

where eq 24 has been used. It is therefore clear that when M
goes to infinity, Δtn goes to zero and t becomes a continuous
variable. In other words, as the value of M becomes larger, the
concentration points in Figure 2 approach each other forming a
straight and continuous line defined by eq 30.

■ SECOND ORDER KINETICS

Approximate Solution and Limit

We now turn to solve the second order kinetics using the
strategy described in the preceding sections. The time interval
in this case is given by

Δ = − Δt
k

1
[A]

[A]2 (32)

The estimation of [A] in the denominator is performed
through the midpoint value associated with a given
concentration change (as done previously in first order
kinetics). Then, in particular, when the concentration changes
to half of its initial value, the nth step of the process requires the
time

Δ = Δ−t t2n
n 1

1 (33)

where

Δ =t
k

8
9 [A]1

0 (34)

Here, Δt1 is the time required for the first step, when the
concentration changes from [A]0 to [A]0/2.
Table 3 summarizes the corresponding time intervals

associated with each step. These results indicate that the size
of the time intervals increases quite rapidly (as 2n) with the
number of steps, and later steps produce points that are ever

farther away between them. This is depicted graphically in
Figure 3.

We now analyze the time intervals associated with changes of
concentration parametrized by M, as described in previous
sections. Naturally, the exact solution is found in the limit when
M goes to infinity. However, the limit here is most easily
evaluated in terms of the parameter P defined by eq 24.
For the nth step we find

Δ = − −
+

−

−t
P P

k P P
4( )

[A] ( )n

n n

n n

1

0
1 2

(35)

Thus, the concentration changes to the value

= P[A] [A] n
0 (36)

when the time becomes

∑= − −
+=

−

−t
k

P P
P P

4
[A] ( )l

n l l

l l
0 1

1

1 2
(37)

It is straightforward to show that the sum can be evaluated as

∑ ∑−
+

= −
+

=
+

−

=

−

−
=

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

P P
P P

P P
P P

P
P P

( )
( 1)
( 1)

1

( 1)
1

1
l

n l l

l l
l

n l

n

1

1

1 2 2
1

2
(38)

where in the last line we used the standard result11

∑ = −
−

≠
=

a
a a

a
a

( 1)
1

, 1
l

n
l

n

1 (39)

with a = 1/P. A brief but important account regarding this sum
is given in the Supporting Information (section C).
Placing the result from eq 38 into eq 37 we find

= −
+

−
⎛
⎝⎜

⎞
⎠⎟t

k
P

P
4

[A] ( 1)
1

[A]
[A]0

2
0

(40)

where eq 36 has been inserted. Finally, since in the limit M →
∞ the parameter P becomes 1, we find

Table 3. Second Order Kinetics

Step No. Δtn [A]initial [A]final

1
k

8
9 [A]0

[A]0
[A]

2
0

2
k
16

9 [A]0

[A]
2

0 [A]
4

0

3
k
32

9 [A]0

[A]
4

0 [A]
8

0

⋮ ⋮ ⋮ ⋮
n × −

k
8 2

9 [A]

n 1

0
−

[A]

2n
0
1

[A]
2n

0

Figure 3. Values of [A] at steps n = 1, 2, and 3 as indicated in Table 3
as a function of time. The exact solution, given by eq 41, is also
included for comparison. Note that all computed values of [A] belong
to the approximate solution in eq 46, and this is represented here by a
dashed line.
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=
+ kt

[A]
[A]

1 [A]
0

0 (41)

which is the exact analytic solution for the second order
kinetics.
Analysis of the Convergence

Using the exact solution, one can find the half-life of the
process to be

=t
k

1
[A]1/2

0 (42)

As in the first order case, we find that our estimate Δt1 here is
smaller than the actual value of the half-life, that is,

Δ
= =

t
t

9
8

1.1251/2

1 (43)

This is, once again, a consequence of the concavity of the exact
solution and the fact that we use a linear interpolation to
estimate the concentration at each step.
The exact expression for the half-life above indicates that

successive concentration changes to one-half of its preceding
value imply the doubling of the half-life. This behavior is clearly
reproduced by the time interval estimates in Table 3. Because
of that, the approximate values of the concentration in this table
can be expressed as a function with the same structure as the
exact solution but involving an effective constant κM. Indeed, by
comparing eqs 40 and 41, the relation between this parametric
constant κM and k is found to be κM = k(P + 1)2/4P and, in
terms of the parameter M, takes the form

κ = +
−

⎡
⎣⎢

⎤
⎦⎥k

M M
1

1
4 ( 1)M

(44)

In particular, for M = 2,

κ
=

k
9
8

M
(45)

in agreement with the half-life analysis above. Thus, all
concentration values in Table 3 belong to the function

=
+ kt

[A]
8[A]

8 9[A]
0

0 (46)

where now t is a continuous variable; see Figure 3.
Thus, as in the case of first order kinetics, the limit operation

M → ∞ has here two effects. It brings the values of the
concentration closer together according to

κ
Δ =

−
+

⎛
⎝⎜

⎞
⎠⎟t

M
t

1
1

1
[A]n

M 0 (47)

where we have solved for Pn in eqs 36 and 40 and placed the
result in eq 35. At the same time, the effective constant κM
decreases to become identical to k. The uniform character of
the convergence to the exact solution is shown explicitly in
Supporting Information (section B).
A comparison of the convergence with M of the effective

constant in the first and second order kinetics is shown in
Figure 4. Although the effective constant corresponding to a
first order kinetics converges faster, both constants converge
rather quickly. In particular, the value of κ10 overestimates the
value of k by 3.3% and 0.09% for second and first order,
respectively.

■ CONCLUSIONS
In this work, we have described an elementary strategy for the
solution of simple kinetic equations based on straightforward
algebraic manipulations. No reference is made to any topic
from differential equations or integral calculus throughout the
solution process. Instead, guided by the physical meaning of the
rate equation represented by eq 1, we outline a general protocol
that allows the derivation of well-known results associated with
simple kinetic processes, and that are otherwise typically
obtained through integration methods.
The scheme discussed in this work relies on estimating the

time intervals associated with given concentration changes,
which are in turn chosen to keep a specified ratio between
successive values. This constant ratio of successive concen-
trations is conveniently parametrized by M, with M being a
number arbitrarily larger than one. For any given value of M,
the estimated time intervals are found to become ever smaller
for zero order, remain constant for first order, or successively
increase for second order.
For the simplest case, the zero order kinetics, all estimates are

obviously exact and the direct evaluation of the limit is merely a
formality. For the first and second order, the estimated time
intervals, although approximate, reproduce in an identical
fashion the trends afforded by the exact solution. Due to this
fact, the approximate concentration values can be cast in the
form of a continuous function with the same form as the exact
solution of the corresponding problem but involving an
effective rate constant. Analytic expressions for the convergence
of the effective rate constant κM are derived, demonstrating that
even for small values of the discretization parameter the
estimated values of the concentration are relatively accurate.
In the limit when the parameter M goes to infinity, the

effective constant becomes identical to the rate constant of the
process. Hence, the exact solution arises naturally by means of a
limiting process that involves the uniform convergence of the
approximate solution. This strategy, in addition, generalizes
without additional complications to the case of kinetics with an
arbitrary fractional order. It is worth noting that the limits
considered in this discussion can be found straightforwardly by
direct evaluation, except perhaps for the limit in eq 9. This
limit, however, can be obtained by elementary algebraic
methods as discussed in the Supporting Information.
Overall, the approach outlined here is therefore elementary,

systematic, exact, and general, and its educational value can be

Figure 4. Graphical representation of the convergence of the ratio κM/
k as a function of M for first and second orders. These plots are based
on eqs 18 and 44 for first and second order, respectively.
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realized on several levels depending on the instructor goals and
objectives. At an elementary level, the instructor’s focus could
be limited to obtaining and analyzing the results in Tables 1, 2,
and 3, which represent the correct solution of the problem
except for the fact that the rate constant is slightly off. A deeper
understanding can be gained by considering the convergence to
the exact solution in first and second order, in comparison with
zero order. A more complete discussion could be based on
analyzing the case of an arbitrary fractional order with the goal
of finding, for example, the corresponding half-life of a certain
process. Other standard exercises on chemical kinetics can also
be addressed within this framework. From the perspective of
the student learning value, on the other hand, it is important to
note that the strategy discussed in this work relies the physical
meaning of “the half-life of a process”, which is an essential
concept throughout chemical kinetics.
As a representative test, a total of 32 students in the first-year

General Chemistry II class at Kettering University were
exposed to the material shown in the lecture file and were
required to do the accompanying assignment. The results were
as follows: 30 students (94%) completed the first exercise
correctly, while 23 students (72%) completed both exercises
correctly. Of the 9 students that failed to do the second exercise
correctly, 4 of them followed the procedure correctly but made
simple mistakes while adding the corresponding fractions. One
student (3%) had previously taken a differential equations class.
Finally, the students were asked to evaluate the following
statement: “Overall, I believe that this is an ef fective approach to
introduce chemical kinetics to a f irst-year class.” The results were
as follows: 28% strongly agree, 44% agree, 16% neither agree/
disagree, 9% disagree, 3% strongly disagree.
Finally, the analysis presented here underscores the

effectiveness of symbolic analytical methods as well, simply
because the use of integrals simplifies the derivations given in
this manuscript to only a few lines. Yet, the underlying rationale
argued throughout this work is quite powerful on its own. It
represents, at its core, the conceptual basis for the use of
numerical schemes in the solution of differential equations.
Such schemes, as it turns out, can properly handle almost any
differential equation including those that might not be tractable
analytically.
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