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ABSTRACT: The ever-increasing impact of molecular quantum calculations over
chemical sciences implies a strong and urgent need for the elaboration of proper teaching
strategies in university curricula. In such perspective, this paper proposes an extensive
project for a student-driven, cooperative, from-scratch implementation of a general
Hartree−Fock self-consistent-field code. The project is primarily (but not exclusively)
intended for a one-semester laboratory course in graduate physical-chemistry curricula:
students are divided into working groups devoted to the implementation of specific
subroutines, which are then gradually assembled in the final code. The resulting program is
not limited to the overused, trivial case of two-electron diatomic systems, but can treat
arbitrary closed-shell molecules with first- and second-row atoms at the STO-3G basis-set
level and includes very useful features such as geometry optimization, population analysis,
and calculation of dipole moments. The heart of the program is the by now historical
algorithm devised by S. F. Boys for evaluating generic molecular integrals through repeated
differentiation of fundamental integrals involving only s-type Gaussian orbitals. Though
highly inefficient and completely outdated from a computational point of view, this method is reasonably fast for small- and even
medium-size molecules (for instance, fixed-geometry calculations on methane and benzene take about 1 s and 6 min, respectively,
on a modest home computer). More importantly, unlike newer advanced algorithms, it can be easily understood and
implemented by students: thus, it becomes particularly appealing for a didactics based on reflexivity and active knowledge
building, rather than on a comfortable but often premature and uncritical use of ready-made professional software packages.

KEYWORDS: Graduate Education/Research, Physical Chemistry, Computer-Based Learning, MO Theory, Quantum Chemistry,
Theoretical Chemistry

■ INTRODUCTION

As a matter of fact, despite its growing tremendous implications
on both a theoretical and a practical level, computational
quantum chemistry still occupies a rather marginal position in
university curricula. Consequently, related teaching strategies
have been developed to a very limited extent as compared to
other branches of chemistry. Current didactic models for this
subject are mostly focused on a direct approach of students to
professional software packages such as GAUSSIAN,1−3

SPARTAN,4−6 GAMESS,7−9 and many others. These powerful
tools rely on decades of research and experience and are
provided with friendly graphical interfaces which enable even
the most inexperienced user to perform complex molecular
calculations in very short times: with no doubt, they are an
invaluable resource for an up-to-date education of chemists and
material scientists, as well as of specialized engineers and
biologists. However, a teaching strategy based exclusively on
software training is quite a risky one. There is significant
danger, in fact, that students assume a passive role in front of
the computer and restrict themselves to mechanically providing
inputs and receiving outputs in a black-box fashion, with little if
any awareness of what the software really does.

Therefore, the introduction of an alternative, more
pedagogically active dimension would be a very useful support
for the ordinary software-oriented didactics. Particularly
intriguing in this light is the exploration of “do-it-yourself”
(DIY) approaches: that is, guiding students to build by
themselves a from-scratch code in order to perform their
own molecular calculations at the most general possible level.
This may appear, at first glance, a rather hard and difficult
teaching aim, but the educational advantages involved are
certainly worthwhile:

• Ref lexivity. Code writing is a deeply reflexive activity.
Students are stimulated to think in a clear and orderly
manner, deciding what and how the computer should
exactly do in order to perform each given task: attention
to every detail is crucial, as every single character of the
code may be a potential source of error. Such work will
make them far more aware of the procedures underlying
molecular calculations and, ultimately, more critical in
using professional softwares.
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• Interdisciplinarity. Implementing computational quantum
techniques is a very good opportunity for students to
consolidate and increase not only chemical, but also
physical, mathematical, and computer skills, with a
significant expansion of their cultural horizon.

• Gratif ication. When, after a demanding work of writing
and debugging, the code finally does what it is intended
to do, a pleasant sense of “mission accomplished”
pervades students, increasing their research spirit and
confidence in their own intellectual potentialities. As a
result, they will be stimulated to face any scientific
problem with autonomous, original approaches, rather
than to systematically rely on “prepackaged” solutions.

In recent and less recent years, other authors felt the need for
enhancing student participation in computational-quantum-
chemistry courses. Their didactic proposals, however, were
generally limited to the trivial case of two-electron atoms10,11 or
diatomic molecules.12 These simple systems are useful in order
to illustrate the very principles of computational procedures,
but are hardly expected to arouse genuine student interest.
In this paper, an extensive project is described for a student-

driven, cooperative, from-scratch implementation of a Hartree−
Fock (HF) self-consistent-field code capable of treating
arbitrary closed-shell molecules with first- and second-row
atoms at the STO-3G basis-set level. At the end of the work,
students will be able to use their own “creature” on a virtually
infinite variety of small- and even medium-size molecules,
obtaining in reasonable times important quantities such as
bond lengths and angles, ionization potentials, partial atomic
charges from population analysis, dipole moments and so on.
The project is primarily conceived for a one-semester course in
the fourth or fifth year of physical-chemistry curricula (usually
corresponding to a graduate level, with some differences from
country to country), but extensions to other profiles are
possible as well.
The heart of every HF code lies in the technique for

evaluating molecular integrals over basis-set functions. Nowa-
days, professional softwares exploit advanced algorithms13

which minimize calculation times, but are by no means suitable
for didactic purposes due to their high mathematical and
programming complexity. On the contrary, the repeated-
differentiation algorithm proposed by the British theoretical
chemist S. F. Boys (1911−1972) in his milestone 1950 paper14

(and used here) is computationally inefficient, but simple
enough to be understood and implemented directly by
students: thus, it can be an extremely precious tool for a
successful development of the DIY perspective.
This paper is organized as follows. An overview of the Boys

algorithm is first given. The structure of the didactic project is
then illustrated, including hour distribution and task partition
among student groups for a typical one-semester course. Finally
discussed are performances and didactic potentialities of the
resulting HF code. Importantly, the online electronic
Supporting Information is intended to be an essential part of
the paper and provides a fully tested and commented Fortran
code (DIYRHF), which can serve as a reference model in
supervising students, as well as sample worksheets, test data,
and a “Mathematical Guidelines” (MG) document with
technical details and programming hints for the crucial parts
of the code.

■ MOLECULAR INTEGRALS AND THE BOYS
ALGORITHM

In the HF scheme, one looks for the ground-state wave
function of a given N-electron atom or molecule in the
approximate form of a single determinant of N one-electron
wave functions (spin orbitals). In particular, this paper
considers only even-N molecules with a closed-shell structure
(Restricted Hartree−Fock, RHF): that is, electrons are
arranged two by two with opposite spin in N/2 molecular
orbitals. These, in turn, can be expressed as linear combinations
of the atomic orbitals of a predetermined basis set; the issue is
then to find the combination coefficients which minimize the
total energy of the molecule for a given nuclear geometry. What
results, in the end, is a matrix eigenvalue problem15 in which
matrix elements are determined by molecular integrals13,15 over
basis orbitals.
Four types of integrals must be evaluated: overlap integrals,

kinetic-energy integrals, nuclear-attraction integrals (two-center
integrals), and electron-repulsion integrals (four-center inte-
grals). The latter ones are the most complicated and have the
form:

∫ ∫μν λσ ϕ ϕ ϕ ϕ| =
| − |μ ν λ σr r
r r

r r r r( ) ( ) ( )
1

( ) ( ) d d1 1
1 2

2 2 1 2

(1)

Here, ϕμ, ϕν, ϕλ, and ϕσ are, respectively, the μ-th, ν-th, λ-th,
and σ-th basis orbitals, r1 and r2 indicate position vectors (x1, y1,
z1) and (x2, y2, z2), and the integration is extended to the whole
six-dimensional space (r1, r2). The definitions of the other
integral types are reported in chapter III of the MG. The total
number of unique integrals of the form (1) increases very
rapidly with the number B of basis orbitals, approximately as
B4/8 (the division by 8 is due to the index symmetry of eq 1:
(μν|λσ) = (νμ|λσ) = (μν|σλ) = (λσ|μν), etc.); as typical
examples, minimal calculations on a molecule of water (B = 7),
benzene (B = 36), and glucose (B = 72) will require,
respectively, 406,222,111 and 3,454,506 integrals. Therefore,
the amount of evaluation work needed per integral plays a
computationally crucial role.
This quantity is of course strictly dependent on the choice of

the basis set. One would be naturally inclined to use orbitals
which closely resemble solutions of the one-electron
Schrödinger equation around each nucleus of the molecule.
In this sense, the most popular ones are certainly the so-called
Slater orbitals,13,15 which are given by (up to a multiplicative
normalization constant):

ϕ ζ

ζ= − − − − | − |

P Q R

x A y A z A

A r

r A

[ , , , , ]( )

( ) ( ) ( ) exp( )x
P

y
Q

z
R

S

(2)

Here, A ≡ (Ax, Ay, Az) is the position vector of the orbital
center; P, Q, and R are non-negative integers which determine
the orbital angular momentum (for instance, P = Q = R = 0 for
s-type orbitals and H = 1, K = L = 0 for px-type orbitals); and ζ
is a properly chosen positive exponent. Slater orbitals are in fact
good basis functions for HF calculations and were extensively
investigated until the 1960s, but unfortunately, evaluating
integrals of the form (1) with these orbitals proves to be
extremely difficult and time-consuming. With a genial intuition,
Boys proposed in his famous 1950 paper14 to approximate
Slater orbitals by linear combinations of Gaussian orbitals
(contractions):
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(4)

In eq 3, M is the predetermined number of Gaussian orbitals to
be used to reproduce a single Slater orbital: the higher M, the
better the accuracy (in practice, M = 3 suffices in most cases;
the famous STO-3G is indeed a minimal basis set of three-term
contractions). Contraction coefficients dm and exponents αm are
to be determined according to a proper least-squares fitting
procedure.15 The key point is that molecular integrals over
Gaussian orbitals are far simpler to evaluate with respect to
Slater orbitals. The introduction of Gaussian contractions was
therefore a decisive factor in elevating quantum chemistry to a
quantitative computational dimension, and nowadays, their use
has become a universal standard in molecular calculations.
How can Gaussian molecular integrals be evaluated? Again in

his 1950 work, Boys proposed a conceptually very simple
algorithm, which is the core of this paper and is based on the
two following points:

• Simple analytical expressions are available (using Fourier-
representation techniques) for fundamental integrals
involving only s-type Gaussian orbitals.13

• As it can be easily verified from eq 4, differentiating a
Gaussian orbital with respect to a coordinate of its center
yields (up to a multiplicative constant) a new Gaussian
orbital of higher angular momentum with the same
center and exponent. As an example, differentiating the s-
type orbital ϕG[A, 0, 0, 0, α] (more compactly, s[A, α])
with respect to Ax yields the orbital ϕG[A, 1, 0, 0, α]
(px[A, α]).

On the basis of these two points above, as illustrated in
Figure 1, one can obtain molecular integrals over Gaussian
orbitals of arbitrarily high angular momentum by successive
analytical differentiation of the correspondent fundamental-
integral expressions with respect to the appropriate center
coordinates. The resulting formulas can then be used for the
separate evaluation of every single integral occurring in the HF
scheme (chapter III of the MG reports all necessary formulas
for all integral types; however, students should exercise to
autonomously derive at least some part of them).
This procedure is a straightforward one, but has very limited

efficiency. In fact, integrals involving orbitals with same centers
and/or exponents can be shown to share many intermediate
quantities, which do not need to be recomputed for every
integral; taking advantage of this and other facts (negligibility of
many integrals due to their very small absolute values,
symmetry of the molecular geometry, etc.) can bring very
significant computational savings, especially for large molecules
with large basis sets.13,16 The Boys algorithm was used quite
frequently in the 1950s and 1960s, but was then quickly
abandoned in favor of more complex and powerful block-
evaluation methods. With this regard, it is worth noting that,
already in 1970, the first edition of the famous GAUSSIAN
software did not employ the raw Boys algorithm but rather the
so-called Pople-Hehre algorithm (achieving high performances

through a special system of coordinate rotations within every
group of integrals involving orbitals with same centers and
exponents).13,17

Despite that, the Boys algorithm has a unique virtue of
tremendous didactic relevance: it is the only molecular-integral
method which can be easily understood and implemented by
university students into a general program for quantum
calculations. On the contrary, all newer algorithms require an
extremely specialized mathematical and programming back-
ground, and are totally out of reach for students. Therefore,
retrieving the “old and dusty” Boys algorithm from the “attic”
of quantum chemistry is indispensable in order to achieve an
authentic, fully effective DIY dimension in computational
courses. This concept is the principal motivation of the present
work.

■ THE DIDACTIC PROJECT
How to actualize the DIY dimension in the concrete teaching
practice? The indications of this section are primarily intended
for the setup of a one-semester laboratory course in graduate
physical-chemistry curricula (fourth or fifth year of studies), but
can certainly be adjusted to other degrees (material science and
engineering, theoretical biology, physics, mathematics) and
levels (undergraduate, Ph.D.).
General Considerations

The fundamental aim of the proposed course is to give students
the opportunity of a pedagogically active approach to
computational quantum chemistry and, in particular, to lead
them to an autonomous (as from scratch as possible)
implementation of a general RHF program based on the
Boys algorithm. The course should consist of two distinct parts:

• A minor, introductory period of frontal lessons about
RHF theory and related technical issues (basis sets,
molecular integrals, matrix manipulation, etc.).

Figure 1. Illustration of the Boys algorithm for the evaluation of
electron-repulsion integrals involving s- and p-type Gaussian orbitals.
Starting from the expression of a fundamental integral involving only s-
type orbitals with given centers and exponents, any other integral
involving same centers and exponents can be obtained (up to a
multiplicative constant) by successive analytical differentiation with
respect to the appropriate center coordinates. Six irreducible integral
classes can be identified. Overlap, kinetic and nuclear-attraction
integrals can be evaluated in an analogous fashion.
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• A second, more extended period of laboratory activity.
Students are divided into working groups devoted to the
implementation of specific subroutines, which are then
gradually assembled in the final RHF code.

Necessary prerequisites for a fruitful attendance include, in
addition to a basic knowledge of atomic and molecular orbital
theory, a good background in mathematics (vectors, matrices,
differential and integral calculus) and elementary programming
skills. These are all standard topics of undergraduate curricula;
however, it is likely that some students will encounter more or
less pronounced difficulties while writing their own code
portions. Other possible limitations to the implementation
project may derive from a too low number of attending
students and/or a limited time availability. In such cases, coding
workloads can be reduced by directly supplying students with
some parts of the final code; if properly measured, such easing
will not compromise the DIY “flavour” of the course.
Partitioning the Implementation Tasks

As better detailed in dedicated textbooks15 and in chapter I of
the MG, the RHF iterative scheme for a specified closed-shell
molecule consists of the following steps:

(1) Choose a proper basis set of atomic orbitals (due to its
implementation simplicity, STO-3G is certainly the best
choice in a pedagogic context; also, its computational
lightness compensates the inefficiency of the Boys
algorithm and allows reasonable calculation times).

(2) Evaluate all necessary molecular integrals over basis
orbitals.

(3) Generate an initial guess for the density matrix P.
(4) Use molecular integrals and P to build the Fock matrix F.
(5) Through a proper diagonalization procedure on F, obtain

an approximation to molecular orbitals (expressed as
linear combinations of basis orbitals) in terms of an
eigenvector matrix C, and to related orbital energies in
terms of an eigenvalue matrix E.

(6) Use C to build a new matrix P and, subsequently, a new
matrix F.

(7) Check whether the density matrix and the associated
total energy have converged according to suitable
predetermined criteria. If not, go back to step (5).

(8) Once the scheme has converged, use the final forms of P,
F, C, and E to evaluate all desired molecular properties
(such as ionization potentials, partial atomic charges
from population analysis, dipole moments, etc.). Also,
the RHF calculation can be repeated for different nuclear
positions so as to determine the optimal molecular
geometry (in terms of bond lengths and angles) which
minimizes the total energy.

Matrices P, F, C, and E are defined in chapters IV and V of
the MG. Every programming language is equally valid in
principle for implementing the RHF scheme; however, the use
of “good old” Fortran is especially recommendable due to both
its extreme syntactic simplicity and the abundance of freely
Internet-available, highly reliable libraries of general mathemat-
ical utility (in particular, diagonalization and minimization
subroutines are, respectively, needed at steps (5) and (8) of the
scheme). On the basis of the above steps, a possible partition of
implementation tasks for a typical course of 60 h with three
working groups is proposed in Table 1.
It is convenient to divide the overall laboratory period into a

number of logically unitary subperiods (five subperiods are
proposed in Table 1 as a summary guideline, but a different
division can of course be chosen depending on time availability
and the number of groups). Importantly, the evaluation of
electron-repulsion integrals is a crucial part of the RHF
program which every student should deal with, therefore the
related implementation task should be simultaneously assigned
to all groups. Another common subperiod should be envisaged
after the completion of the program, in order to highlight its
potentialities through a teacher-guided application to some
illustrative molecules. On the whole, in the case of Table 1,
each group will have to produce about 570 Fortran instruction
lines, meaning an average of less than 13 lines per laboratory
hour without considering homework time (the number of
instruction lines in the code DIYRHF for every single
implementation task is indicated in Table 1).

Organizing and Supervising the Group Work

At the beginning of each subperiod, each group will be
provided with proper working documentation: an unambiguous
description for all input and output parameters of each
subroutine to be implemented, an account of involved
mathematical details, programming hints, and finally, test data
(that is, expected outputs for given inputs) to check the correct
functioning of the finished code. All such material can be found
in the electronic Supporting Information of the paper. Ideally,
each group should be followed by a dedicated tutor, which will
help students in solving possible programming problems and
ultimately evaluate the overall quality of their work. At the end
of every subperiod, each group will share their own code with
the other ones and hold a brief presentation about its
development (logical structure of the code, major difficulties
encountered, adopted solutions, etc.).
A final note is for the cooperative dimension of the didactic

project. This pedagogically crucial element should be constantly
emphasized and stimulated throughout the course. Implement-
ing a general quantum-chemistry program is a demanding aim,
which requires students to establish a good collaboration at

Table 1. Distribution of Time and Tasks for a Typical 60-h Course with Three Working Groups

Period 2 (50 h) Implementation of the RHF Codea,b,c

Working
Group

Period 1 (10 h)
Introductory Lessons 2a (6 h) 2b (16 h) 2c (10 h) 2d (14 h) 2e (4 h)

1 Fundamentals of RHF
theory (done by all
groups)

Overlap integrals
[III] 56

Electron-repulsion integrals
[III] 314 (done by all
groups)

Building of the basis
set [II] 114

Geometry opti-
mization 76

Analysis of some molecules using
the final code (done by all
groups)2 Kinetic-energy in-

tegrals [III] 59
Assembling of matrix
F [IV] 69

Molecular prop-
erties 130

3 Nuclear-attraction
integrals [III] 75

Matrices P, C, E and
total energy
[I, V] 82

Main iteration
scheme
[I, V] 100

aDetails for the crucial implementation tasks are provided in the Supporting Information (MG). bRoman numerals in square brackets indicate
chapter numbers in the MG. cArabic numerals correspond to Fortran instruction lines in the code DIYRHF.
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both intra- and intergroup levels. Accordingly, the final course
mark for each student should be determined by a properly
weighted sum of a personal component (deriving from a
written and/or oral examination) and a collective component
expressing the working quality of his/her group (timeliness in
code delivery, accuracy of the code, effectiveness in
intermediate presentations, etc.).
Up to now, the full project has not yet been tested in a “real-

world” classroom and no comprehensive data are available on
related pedagogic outcomes. However, as a preliminary
indication, four graduate physical-chemistry students were
personally guided by the author to the implementation of the
only overlap and kinetic-energy integrals during a minor
laboratory course in spring 2014. Students were divided into
two pairs (one devoted to overlap integrals and one to kinetic-
energy integrals). Both pairs were provided with detailed step-
by-step worksheets (as available in the electronic Supporting
Information) and assisted with fully tailored support through-
out the whole implementation process. Despite this, only one
pair was able to complete its own task within 6 laboratory hours
as envisaged in Table 1 (8 h were taken by the other pair; both
pairs declared an additional homework time of about 6 h).
These results suggest that Table 1 should be regarded as an
ideal efficiency standard rather than a strict, rigorous schedule.
In any case, the surprising enthusiasm of those few students at
the end of the activity (when their code was incorporated into a
full RHF program and successfully tested on several molecules)
was a powerful incentive to the development of the present
work.

■ THE FINAL CODE
Once the implementation project is successfully accomplished,
students will have available a flexible tool for performing
quantum calculations in a critical, “open-box” fashion.
Calculation Times

Though unavoidably far slower with respect to professional
softwares, a DIY code based on the raw Boys algorithm can be
reasonably quick with not only small- but also medium-size
molecules. Figure 2 shows the STO-3G calculation time taken
by DIYRHF on a typical present-day home computer vs the
number B of basis orbitals for a selection of inorganic and
organic molecules with fixed standard geometries. This time is
primarily associated with the evaluation of electron-repulsion
integrals (see above the “Molecular Integrals” section) and, as
expected, scales with B as B4 (for comparison, the scaling
exponent can be reduced up to only 1 (linear scaling) using
state-of-art HF algorithms).16 A time of about 1 s and 6 min is,
respectively, needed for methane and benzene, but with some
patience one can also face an intriguing variety of larger
molecules of biological relevance, such as (Figure 2) DNA
bases (cytosine, B = 45), carbohydrates (α-D-glucose, B = 72),
amino acids (tryptophan, B = 87), pharmaceuticals (ibuprofen,
B = 93, a typical analgesic),18 and toxic agents (2,3,7,8-
tetrachlorodibenzo-p-dioxin or TCDD, B = 110, the contam-
inant involved in the 1976 Seveso accident).18 From a
pedagogical point of view, taking several hours to perform a
calculation of this sort with one’s own DIY program can be far
more gratifying than a comfortable few-minutes run on a ready-
made professional software.
Geometry Optimization

An extremely useful feature, which can be included in the
implementation project with only a small additional effort, is

geometry optimization. For students, in fact, investigating the
shape of molecules and comparing their own calculations with
experimental data is a very exciting and stimulating activity.
With this regard, it is worth noting that, despite its minimal
character, the STO-3G is often surprisingly accurate in
predicting bond lengths and angles (in some cases, more
accurate than larger basis sets).
Such good behavior is actually nothing but the lucky result of

a cancellation of errors;19 however, this is of no relevance in a
DIY pedagogical context. To perform geometry optimization, a
suitable search algorithm is needed to explore the space of
nuclear coordinates (starting from an initial guess) and to
locate the absolute minimum of the total energy. Professional
softwares generally rely on quasi-Newton algorithms,20 which
are very powerful but require the calculation of first and second
energy derivatives with respect to nuclear coordinates.
Furthermore, implementing the evaluation of these quantities
is an exceptionally laborious task and is not recommendable for
a didactic project. It is then convenient to turn to direct-search
algorithms,20,21 which are less powerful but have the advantage
not to need any energy derivatives. Students should just be
asked to take an already available direct-search code of general
utility and to properly incorporate it into their RHF program as
an optional optimization tool. DIYRHF uses a compass-
search21 code by J. Burkardt,22 but other algorithms can be
chosen as well. As an illustrative example, Figure 3 shows the
DIYRHF optimization path in the case of a formaldehyde
molecule (three degrees of freedom). Typically, starting from a
reasonable initial guess, direct-search algorithms need to
explore some hundreds of geometries (and thus to perform
as many RHF calculations) before locating the energy
minimum to a good accuracy (in the case of Figure 3, a total
of 207 geometries were explored before convergence).
Therefore, direct-search optimization is in practice applicable
only to small-size molecules.
Molecular Properties

A last point of interest is the determination of molecular
properties from the final wave function, which is, in fact, the
ultimate aim of any quantum calculation. An immediately

Figure 2. CPU time taken by the code DIYRHF for fixed-geometry
STO-3G calculations of various molecules, as a function of the number
of basis orbitals (bilogarithmic plot). Nuclear coordinates were
preliminarily generated using standard values for bond lengths and
angles or directly downloaded from the PubChem Internet database18

in the case of cytosine, α-D-glucose, tryptophan, ibuprofen, and
TCDD. All calculations were carried out on a typical home computer
(Asus X58LE, 2.16 GHz, 667 MHz front-side bus, 3 GB RAM,
Windows XP Professional). The solid line is obtained by linear fitting
and has a slope of 4.09 ± 0.03. Further details on calculation settings
and results are provided in the electronic Supporting Information
(archive DIYRHF_TEST).
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available quantity is the first-ionization potential (coinciding,
according to Koopmans theorem,15 with the absolute value of
the energy of the highest occupied molecular orbital). Other
significant examples are the Mulliken/Löwdin population
analysis15 for obtaining partial atomic charges and the
evaluation of electric dipole moments.15 The first one is just
a straightforward manipulation of matrices P and S, whereas the
second one involves a more demanding task, in that one needs
to preliminarily implement the calculation of basis-set matrix
elements for the dipole-moment operator. Both features are
included in the code DIYRHF (formulas for the dipole-
moment integrals are provided in chapter III of the MG).
The present overview gives only a broad indication on

performances and potentialities of the expected DIY program.
Depending on students’ needs and teachers’ preferences, many
details can of course be changed, simplified, or even eliminated.
The final code can also be employed as a starting material for
more advanced DIY courses; didactically feasible extensions
include unrestricted (UHF) calculations,15 the application of
external electric fields (so as to investigate geometry
deformation and dielectric constants) and the use of larger
basis sets (as an unavoidable consequence, calculation times
will considerably grow in the latter case: for instance, using
even a light basis set such as the 4-31G15 will increase the
calculation time for benzene (B = 66) by a factor of about 11
with respect to the STO-3G case (B = 36), from 6 min to more
than 1 h on a typical home computer).

■ CONCLUSION
Among the large variety of techniques for evaluating molecular
integrals, the 1950 Boys algorithm is probably the only one
which can be easily understood and implemented by university
students. Therefore, it can play a crucial role in building a DIY
pedagogical dimension for computational quantum chemistry
(as opposed to a passive, black-box use of professional software
packages).
In this light, the present paper has discussed the very

intriguing possibility of leading students to a cooperative, from-
scratch implementation of a general-utility RHF/STO-3G code

(capable of treating arbitrary closed-shell molecules with first-
and second-row atoms, and optionally enriched with tools such
as geometry optimization, population analysis and evaluation of
dipole moments).
In 1950s and 1960s, the limited available computer resources

made RHF calculations with the Boys algorithm almost
prohibitive. As a consequence, this technique was quickly
abandoned in favor of more complex and powerful ones.
Nowadays, however, technology has made a huge progress.
Tests with the code DIYRHF (expressly written as a teacher
support, along with a “Mathematical Guidelines” document
providing technical details for the crucial parts of the code)
show that even a modest home computer can run the Boys
algorithm in reasonable times, at least in the case of small- and
medium-size molecules. A technically obsolete tool can be thus
fully rediscovered in a concrete didactic perspective.
Supervising students in the implementation of their own

“DIY GAUSSIAN” may appear a very demanding and even
audacious aim, but is certainly an invaluable pedagogical
opportunity in terms of reflexivity, interdisciplinarity and
gratification. In any case, the structure of the didactic project
is highly flexible and can be easily adjusted and redimensioned
to properly meet students’ needs and teachers’ preferences.
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