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ABSTRACT: The method of least-squares (LS) has a built-in procedure for
estimating the standard errors (SEs) of the adjustable parameters in the fit model:
They are the square roots of the diagonal elements of the covariance matrix. This
means that one can use least-squares to obtain numerical values of propagated
errors by defining the target quantities as adjustable parameters in an appropriate
LS fit model. Often this will be an exact, weighted, nonlinear fit, requiring special
precautions to circumvent program idiosyncrasies and extract the desired a priori
SEs. These procedures are reviewed for several commercial programs and
illustrated specifically for the KaleidaGraph program. Examples include the
estimation of ΔH°, ΔS°, ΔG°, and K°(T) and their SEs from K° (equilibrium
constant) values at two temperatures, with and without uncertainty in T, which is
included using the effective variance method, a general-purpose LS procedure for
including uncertainty in independent variables. In some cases, the target quantities
can be obtained from the original data analysis, by redefining the fit model to include the quantity of interest as an adjustable
parameter, automatically handling correlation problems. Examples include the uncertainty in the fit function itself, line areas from
spectral line profile data, and the analysis of spectrophotometric data for complex formation.

KEYWORDS: Upper-Division Undergraduate, Graduate Education/Research, Physical Chemistry, Laboratory Instruction,
Analytical Chemistry, Problem Solving/Decision Making, Calibration, Chemometrics, Thermodyamics

Although chemistry students encounter some elements of
error propagation as early as their general chemistry

courses (e.g., significant figures rules), their most serious
encounter with this topic is usually in the physical chemistry
teaching laboratory, where they learn to use the equation
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to compute the statistical error σf in a function f(β) of the
independent variables β1, β2, ... having statistical errors σ1, σ2, ....
These applications include especially the analysis of the data
they collect in the laboratory. There, an understanding of eq 1
should lead them to appreciate the relative importance of the
several measured quantities in an experiment. For example, in
bomb calorimetry, multiplication and division to the first power
are the only significant mathematical operations involved in
analyzing the data. Because pellet and calorimeter water masses
can be measured easily to 0.1%, whereas the temperature rise
ΔT is uncertain by 1%, students should recognize that ΔT will
be precision-limiting and, hence, deserving of more care in the
experiment.
Realizing that using eq 1 can be tedious and error-prone,

several contributors to this Journal have described mathemat-
ical procedures for obtaining numerical estimates of σf for any
defined function f.1−6 They accomplish this by estimating the
required derivatives numerically in provided algorithms. I
would argue that mastery of eq 1 is of value in itself, for reasons
like those stated in the bomb calorimetry example. Surely,

students should learn the simpler forms this expression takes
when just addition and subtraction or just multiplication and
division are involved, especially because these cases lead to the
separate rules for significant figures in these two cases.7 Also,
they should recognize that in single variable relations, y = f(x), a
1% uncertainty in x leads to 1/2%, 1%, and 2% uncertainty in y
when the functional dependence on x is to the powers ±1/2, ±
1, and ±2, respectively; and to an uncertainty of 0.01 in ln(x).
Still, there are cases more complex than these where a
numerical result can be at least reassuring if not essential. To
that end, I discuss below an approach that I believe has been
only touched on here before:5 using least-squares (LS).
A key virtue of the method of least-squares is that it can

provide estimates of not just the adjustable parameters but also
their statistical precisions. When the data error is known, these
parameter standard errors (SEs) are not just estimates, they are
exact in the case of linear LS (LLS) and exact in the limit of
small data error for nonlinear LS (NSL).8,9 In error
propagation, we start with assumed known SEs for the
independent variables. Thus, using LS to do the propagation
requires defining the quantity f of eq 1 as an adjustable
parameter in a weighted LS fit, with the uncertain independent
variables β being variables in this fit, having weights equal to
their reciprocal squared SEs. Usually, this fit will also be a
nonlinear one. Many LS programs can handle weighted
nonlinear fitting. Here, I use the KaleidaGraph program
(Synergy Software) for my illustrations,10 but programs like
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Origin (OriginLab Corp.), IGOR Pro (WaveMetrics), and R (r-
project.org) can be used as well.
There is one nuisance complication in using LS for error

propagation: Many applications involve exact fits, where the
number of adjustable parameters is equal to the number of data
points. This problem is practical rather than fundamental, as
NLS algorithms can solve systems of n equations in n
unknowns. But packaged routines may contain tests to
determine if the number of input points is sufficient. In the
case of KaleidaGraph, that test is simple: There must be at least
three points. Thus, KG functions correctly in solving systems of
equations having n > 2 (and in fact also provides solutions for
underdetermined systems, like fitting a four-parameter function
to three points, in which case the output depends unpredictably
on the trial input parameter values). There are easy ways to get
around this problem. One is just to include extra values of the
points, greatly downweighted to ensure that they have no effect
on the numerical outcome. Another is to include multiple
values with altered SEs, for example replacing one value having
SE = σ with four identical values having SE = 2σ (hence being
statistically equivalent).8 These tactics are illustrated below.
A second potentially tricky aspect to exact LS fitting is more

fundamental: The sum of weighted, squared residuals (δi =
observed − calculated yi values)

∑ ∑δ δ σ= =w ( / )i i i i
2 2

(2)

goes identically to zero. S is the LS minimization target (“least
squares”), and it equals zero anytime all “observed” values equal
their “calculated” counterparts, which must occur when the
number of points equals the number of adjustable parameters
(giving zero “degrees of freedom” ν). In ordinary unweighted
LS, S/ν becomes an estimate of the data variance; and the
estimates of the parameter SEs (called a posteriori) contain a
factor of (S/ν)1/2, which means they must vanish (or be
indeterminate) for exact fits. However, in weighted LS, when
the data error is assumed to be known, the appropriate SEs are
the a priori values,8 and these do not contain this factor. This a
priori mode is the default for weighted LS in KG,10 so KG can
be used directly for error propagation. The problem of invoking
this mode in other programs is addressed below.

■ COMPUTATIONAL CONSIDERATIONS
In KaleidaGraph, both nonlinear and weighted fitting require
the General routine.10 The user enters xi, yi, and σi in separate
columns of a given row in the data sheet. The data are displayed
in an x−y plot and General is selected under the Curve Fit
menu. The fit function is entered in a Define Fit box, which
includes a “weight data” option. When this is checked, the user
is prompted for the column containing the σi values; and the
weights are taken as 1/σi

2 in the computations, which use the
Marquardt algorithm.11,12 The output includes the “Value” and
“Error” for each parameter, the latter being the a priori SE,
which here is the desired propagated uncertainty.
Other programs handle the choice between a priori and a

posteriori SEs differently. For example, the Origin program
offers several ways to define weights; and in execution, it
permits the user to check a box, “Scale errors by square root of
reduced χ2.” (This is my S/ν, and the scaling produces the a
posteriori SEs, so this box should be left unchecked in the
present application.) In the FORTRAN program CURFIT
provided long ago by Bevington,12 the parameter SEs and the
covariance matrix (V) are the desired a priori forms. This is true

also for the similar subroutine MRQMIN of Press et al.13 In R,
for both linear (“lm”) and nonlinear LS (“nls”), there is an
output called “cov.unscaled” which is the desired a priori V,
from which the SEs are the square roots of the diagonal
elements.
In Excel, NLS is done with the Solver routine, which does

not provide parameter SEs. To remedy this deficiency, de Levie
provided a routine called SolverAid.14 Present versions of this
program do not accommodate weights, but the program listing
is freely available,15 so users can modify it. For general NLS
applications, the minimization target for Solver will also have to
be changed to the sum of weighted, squared residuals defined in
eq 2. But SolverAid alone, with the weights modification, will
suffice for error propagation.16 In the current version, the
definition statement for V (VarCovarValue) includes a factor of
“Sy * Sy”, which converts the desired a priori SDDInv(i, j) to
the a posteriori version.
The conversion from a priori to a posteriori V just noted for

SolverAid serves to emphasize that the latter requires an extra
step beyond the former, namely the estimation of σy.
Accordingly, users of programs like MathCad and Mathematica,
who normally work “closer” to the fundamental mathematics,
will compute the a priori version in any evaluation of V.
Some error propagation problems can be cast as LS fits of the

most familiar two-dimensional y = f(x) form, with only y being
uncertain. However, many require allowance for uncertainty in
x, or even for more than two variables. An example of the first
type is the estimation of thermodynamic quantities from the T
dependence of equilibrium constants, discussed in the next
section. Examples requiring multiple uncertain variables include
this one with inclusion of uncertainty in T, and the example in
ref 2 of determining gas heat capacities from three pressure
measurements, which becomes a 1-point NLS problem with
three uncertain variables. Such problems are best handled with
so-called total variance methods (also called “errors in variables”
and sometimes “generalized”), which were proposed as early as
1938 by Deming,17 and have been available in computer
algorithmic form since 1972.18,19 KaleidaGraph and similar data
analysis programs cannot directly implement such methods, as
they are designed to handle a single uncertain variable.
However, there is a variation of total variance, called the
ef fective variance method, in which the uncertainty in the
“independent” variables is converted into an effective
contribution to the variance in the single dependent one.
This is essentially the implementation of Deming’s method
described long ago in this Journal by Wentworth.20 Using
Monte Carlo simulations, I have shown that there is
insignificant practical difference in the two methods in a
number of common fitting problems.21 For the present
application, where the fits are exact, there is no difference at
all, so I will illustrate how to use effective variance to handle
independent variable uncertainty in several examples. This may
require the use of eq 1 to obtain expressions for the
contributions to the effective variance, but it can also be
done using the “functional approach”,6 keeping the treatment
entirely “numerical”.

■ ILLUSTRATIONS

ΔG°, ΔH°, and ΔS° from Temperature Dependence of K°

Suppose that K° has been estimated at two Ts and we wish to
obtain values for ΔG°, ΔH°, and ΔS°. If values are available at
only two Ts (as is often the case in the teaching laboratory), we
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must assume that ΔH°, and hence ΔS°, are independent of T.
At T = T1, we have

Δ ° = − °G RT Kln1 1 (3)

whence

σ
σ
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1
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and similarly at T = T2. A weighted LS fit of these two values to

Δ ° = Δ ° − Δ °G H T S (5)

will thus yield ΔH°, ΔS°, and their SEs. When (as here) the
ΔG° values are obtained from equilibrium constants at multiple
Ts, a useful variation of eq 5 is

° = − Δ ° + Δ °
K

H
RT

S
R

ln
(6)

If the K° values are obtained with constant percent error (as is
often the case22), we have σ(ln K°) = σK°/K° = constant;
however, a weighted fit is still required to obtain the desired a
priori SEs.
A classic teaching laboratory experiment for studying

temperature dependence of equilibrium is the complexation
of I2 with mesitylene, as reported in a landmark paper by Benesi
and Hildebrand23 and appearing in the teaching literature as
early as 1962.24 This experiment has been revisited recently in
this Journal by Baum et al.,25 who show in their Figure 5 an
analysis of 3 K° values using eq 6. From their data I estimate
that σ(ln K°) ≈ 0.025. To illustrate the pure error propagation
capabilities of LS, I adopt this value and conduct a weighted fit
of just the two extreme-T K° values. Results are shown in
Figure 1 (upper fit results box), where each value is quadrupled
and given a σ value double its true value.
Identical results are obtained fitting to the exponential

version of eq 6, for which we must now supply σ values for K°
for the weighted fit. From eq 1, these are 0.025 times the
respective K° values. Alternatively, we can fit ΔG° values using
eq 5, now requiring σ(ΔG°), from eq 4 for the weighting.
Results for both approaches are shown in Figure 2, obtained

this time by adding a third downweighted value. The data
sheets for both figures are shown in Figure 3.

To include uncertainty in T by the effective variance
treatment, we must use eq 6 or its exponential version because
ΔG° is itself subject to uncertainty in T, and the effects of this
and the explicit uncertainty in T are subtly correlated. Suppose
the uncertainty in T is σT = 1.0 K. The relative error in x ≡
1000/T is the same as that in T, giving σx = (1.0/T)x (column
C5 in Figure 3, obtained using C5 = 1./C0*C1 in the Formula
Entry window). Applying eq 1 to eq 6, the T contribution to
the variance in lnK° is the square of s-eff-ln K = |ΔH°| × σx/R
(C6 of Figure 3). The total effective variance in ln K° is the

Figure 1. KaleidaGraph least-squares results for ΔS° (a, units of J
mol−1 K−1), ΔH° (b, units of kJ mol−1), and their standard errors from
eq 6 analysis of equilibrium constant K° at 25 and 45 °C, for T taken
as error-free (upper results box) and having uncertainty σT = 1.0 K
(lower). Four ln K° values are included at each T, having uncertainty
σ(ln K°) = 0.050 (2 × true) and values −0.5640 and −0.2881.

Figure 2. Alternative analyses of same data for σT = 0 using eq 5
(upper results) and the exponential version of eq 6 (lower, dashed
curve).

Figure 3. KaleidaGraph data sheet for Figures 1 (top) and 2 (bottom).
The fit for σT = 0 in Figure 1 is done by masking out the third row
(numbered 2) and fitting the 4 values at each T with doubled σ values
(0.05). The fit for σT = 1.0 K is done by masking out the 6 rows
numbered 4−9 and selecting the σ values in column C7 (s-eff-tot) for
weighting. The displayed error bars are selected from column C4. Both
fits in Figure 2 use T (C0) as independent variable and K° and the
adjacent σ column for one fit, and ΔG° and its adjacent σ column for
the other. Columns C11 and C14 are for error bar display.
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square of s-eff-tot [C7 = sqrt (C6^2 + 0.025^2) in FE window].
This weighting yields a 14% increase in the SEs, shown in the
lower fit box in Figure 1.
It is instructive to check the results of this LS approach

against those obtained using eq 1. To do so, we must first
express ΔH° and ΔS° in terms of K° and T. For the former, we
have the van’t Hoff relation

°
°
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and for the latter, we obtain

Δ ° = − ° − °−S R T T T K T K( ) [ ln( ) ln( )]2 1
1

2 2 1 1 (8)

If we neglect uncertainty in T, the error in ΔH° is proportional
to that in ln(K2°/K1°), which is 0.025√2. Scaling by R and the
reciprocal T term yields 1.3942 kJ/mol, in agreement with
results in Figure 1 for σT = 0. For ΔS°, the rule for addition and
subtraction gives for the error in the term in brackets 0.025 [T1

2

+ T2
2]1/2. Scaling by the other factors in eq 8 yields agreement

with the results in Figure 1.
With allowance for T uncertainty, we treat ΔH° in eq 7 by

applying the results for division (squared relative error = sum of
squared relative errors of numerator and denominator) after
first computing the σs for the ln K° ratio (already done) and the
difference in the reciprocal Ts. The result again agrees with the
relevant one in Figure 1. Applying eq 1 to eq 8 yields four
contributing terms  for the two Ts and the two Ks. The key
partial derivatives are, for example

∂Δ °
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=
° − Δ °
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S
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R K S
T T
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and similarly for ∂/∂T1, but with the sign reversed. The terms
for K° are as before, and the complete result again agrees with
that in Figure 1, confirming the validity of the effective variance
treatment. The latter, though not fully numerical, still involves a
simpler use of eq 1.
The 1.0 K temperature uncertainty adds only nominally to

the total errors. However, if σT were doubled or if the ΔT
interval were halved, the effects of T uncertainty would exceed
those from K uncertainty. This is because the individual
variance contributions from T uncertainty are proportional to
the squares of σT and 1/(T2−T1).
Equation 7 can be used for a different LS fit of the points at

the two Ts

° = ° + Δ ° −
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where T0 is specified and ΔH° and ln(K0°) (or K0° itself)
become the adjustable parameters. This fit returns the same
value and SEs as before for ΔH°, for both σT = 0 and σT = 1 K.
For ln K°, the error when σT = 0 and T0 is set to either T1 or T2
is 0.025; it drops to 0.025/√2 midway between these two Ts.
With σT = 1.0 K, there is an asymmetric increase in σ(K°), from
about 12% at low x (high T) to 16% at high x, averaging the
previously noted 14%. Equation 10 is mathematically equivalent
to the Arrhenius relation for the dependence of reaction rate
constants on T, so this treatment can be used to assess the
activation energy and kT and their uncertainties as functions of
T.5

Having obtained ΔG° and ΔH° and their SEs, one might be
tempted to use eq 5 for a simpler estimation of ΔS° and its

uncertainty. Although that approach is incorrect,26 it can yield
results that are close to correct. That is because σ(ΔG°) from
K° is often so much smaller than σ(ΔH°) that σ(TΔS°) ≈
σ(ΔH°).22 In the present case, estimates of σ(ΔS°) obtained
this way exceed the true values by only 0.2% for both σT = 0
and σT = 1 K.
If data for K° are available for more than two temperatures,

the problem becomes a straightforward application of weighted
NLS, as noted earlier. However, one must generally allow for T-
dependence in ΔH°. To do this, we start with the differential
form of the van’t Hoff relation
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and integrate for an assumed T-dependent ΔH°. This case has
been discussed for ΔH° that is quadratic in T (permitting ΔCP°
to be T dependent), with procedures for using KaleidaGraph to
obtain ΔG°(T) (dependent upon K°(T) alone), ΔH°, ΔS°,
ΔCP°, and their errors as functions of T.

22 Uncertainty in T was
not considered but can be included through the effective
variance approach.27

More than Two Variables

Many error propagation problems are not suitable for two-
dimensional LS, because they involve more than two uncertain
variables. For example, in Figure 4 of ref 4, the authors use an
Excel spreadsheet to illustrate the calculation for a function of
five uncertain variables, f(y,z,u,v,w) = y + z2 + uvw. One can use
KG on this problem, through its cell command, by which
variables are accessed by their column numbers. One variable
must first be selected as “dependent”. For example, taking y to
be such, the fit function can be expressed in the Define Fit box
as, for example

− ^ − * *a cell(x, 3) 2 cell(x, 4) cell(x, 5) cell(x, 6) (12)

in which a is the adjustable parameter equivalent to f, and z, u,
v, w are placed in columns 3−6, respectively. The
“independent” variable x is the row number, and again one
must add at least two rows of values to satisfy the KG
sufficiency test. In this case, the effective variance approach
requires as much formal effort with eq 1 as just using the latter
directly. Thus, there is little point in using LS here, especially
because the application of eq 1 is easy. A problem similar to this
but more demanding in application of eq 1 is the determination
of the gaseous heat capacity CV from three pressure
measurements, discussed by Donato and Metz.2 The KG
treatment of this problem is illustrated in Supporting
Information, including use of the method of ref 6 to get the
contributions to the effective variance. Results from a
FORTRAN program like those from refs 18 and 19 are also
included for comparison.
A more appropriate target for the LS approach is the

absorbance problem also discussed by Gardenier et al.4 Here,
the concentrations of two components having overlapping
absorption spectra are determined from absorbance values A at
two wavelengths, in accord with

ε ε= +A c ci i i1 1 2 2 (13)

where εij is the molar absorptivity of component j at wavelength
i. To use eq 1, we must first solve for c1 and c2 in terms of the
two A and four ε values, all uncertain, making this a six-variable
error propagation computation. The solution and error
propagation are handled automatically in the LS approach,

Journal of Chemical Education Article

DOI: 10.1021/ed500888r
J. Chem. Educ. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/ed500888r


and the effective variance calculations are easy. The KG fit
function might be defined as

* + *a cell(x, 1) b cell(x, 3) (14)

with A taken as the dependent variable and the independent
variable x again being the row number in the data sheet. The
concentrations are the adjustable parameters, a and b, and C1
and C3 contain the ε values. The effective variance from each ε
is of form (σεj cj)

2, so the total for each A is the sum of two such
terms and σA

2. The treatment is readily extended to more than
two wavelengths (and to more than two components), with no
additional labor in assessing the effective variances because they
can be obtained for all wavelengths at once using column
arithmetic operations in the Formula Entry window.10 A
numerical illustration of this example is included in the
Supporting Information.
Designing LS Fits to Output Derived Quantities and their
SEs

We have already seen how one can obtain additional
information by redesigning the fit, for example, K°(T0) instead
of ΔS° from K°(T) in eq 10. I consider other cases here. Note
that if we want to evaluate K° as a function of T from the
original analysis in terms of ΔH° and ΔS°, we will need to take
correlation into account because parameters from an LS
analysis are generally correlated.5,8,17,28−31 In matrix form, the
desired expression for the first-order propagated error is

σ = g Vgf
T2

(15)

where g is a column vector containing the partial derivatives of
the function f with respect to the adjustable parameters,
evaluated at the values of the variables and parameters of
interest. Many available packages for numerical error
propagation cannot handle correlation, or if they can,5,32

anyway require V for input, which in turn requires calculations
equivalent to the LS fit. The methods I discuss here yield the
correct results directly from the fit, without any need for eq 15.
An important case is where f is the fit function itself, for

which we may want σf as a function of the independent variable.
For example, in classical univariate calibration, the uncertainty
in the unknown x0 can be calculated for any calibration fit
function, using33,34

σ
σ σ

=
+x

df dx

( )

( / )x
f y2

2
0

2

0
20

0

(16)

where σy0 is the uncertainty in the measured response for the
unknown. Consider the polynomial in x: f(x) = a0 + a1(x−x0) +
a2(x−x0)2 + .... Using eq 15, one can show that at x = x0, f(x) =
a0, and σf = σ0. Furthermore, although the numerical values of
all but the highest-order coefficient change with x0, the output
fit function is independent of x0. Thus, by repeating the fit for
various x0, we may generate f(x0) and its σf as functions of x0.
Further, the derivatives and their SEs are also obtained directly
this way; that is, a1 is the first derivative at x0, and so forth. A
variation on this is the function g(x) = b0 + b1(x−x0) + b2(x

2−
x0

2) + .... This approach is more widely applicable than the
polynomial in (x − x0)for example,8 to the van Deempter
equation, which contains a term in x−1but the derivatives are
not as easily obtained when those are of interest.
Figure 4 shows both of these functions used at the cubic level

to fit thermistor calibration data, for x0 = 25 °C. Note that the
fit functions are identical, as are the a and d values and their

SEs, and Chisq. Both functions remain unchanged as x0 is
altered (shown only for the polynomial centered at 25° and
30°), as do d and its Error; but all other quantities change. For
any x0, a and its Error are the values of the fit function and its
uncertainty.
Among other derived properties of interest are line areas

from spectrometric techniques that yield line profiles by
scanning a controlled variable. If the profiles can be represented
by a functional form (e.g., Gaussian), it can be useful to fit the
data to such form and then compute the area under each line
using the fit parameters. Intuitively, most analysts would fit a
line profile using the parameters that govern its position,
amplitude, and width. The area is proportional to amplitude ×
width, but eq 1 does not give the correct uncertainty in the area
because the amplitude and width are correlated. An alternative
is to fit directly to the area and obtain the correct SE directly
from the fit. This case is illustrated in the Supporting
Information, where the correct SE for the area is 35% smaller
than computed using eq 1.
As a final example, consider the analysis of spectrophoto-

metric data for complexation, as used in ref 25 to obtain the
K°(T) data I used in my first example. The reaction under
study is

+ ↔ •M I M I2 2 (17)

From the earliest study of this process,23 it has been customary
to take [M]0 ≫ [I2]0 and then to analyze the data using

ε ε
= +

I L
A K

[ ] 1
[M]

1

x x x

2 0

0 (18)

where subscript 0 indicates the initial concentration in the
reaction mix, Ax and εx are the measured absorbance and the
molar absorptivity, respectively, of the complex at a suitable
wavelength, and L is the cuvette path length. If these data are
fitted to a straight line, y = bx + a, with x = 1/[M]0, then εx =
1/a and K = a/b. Equation 1 will correctly determine the SE for
εx, but not for K, because it is a function of both LS parameters
and they are correlated. However, by redefining the fit relation
as y = x/(a b) + 1/a, we have a nonlinear LS fit to a straight line
that yields εx(a) and K(b) and their SEs directly, with
correlation automatically included.

Figure 4. Cubic LS fits (unweighted) of thermistor calibration data
(true−thermistor) using a polynomial in (t − x0) (upper left results for
25 °C, lower right for 30°) and the alternative form discussed in text
(g(x), upper right).
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■ CONCLUSION

The method of least-squares can be used to obtain numerical
values for the propagated error in any desired function of the
quantities that are presumed to have known uncertainty. If the
latter are themselves the results of a least-squares analysis, this
fit may be modified to include the desired quantity as an
adjustable parameter, in which case correlation will be taken
into account automatically. In other situations, a new LS fit can
be designed to represent the target quantities as parameters,
with the known quantities taken as uncertain variables. This fit
will usually be exact and will require weighted, nonlinear LS to
obtain the a priori parameter SEs.
A numerical value for the propagated error unfortunately

may not translate easily into confidence limits. First, we have
completely ignored uncertainty in the “known” uncertainties; if
these have been obtained from measurements, they are subject
to the properties of χ2, which means they have a relative
uncertainty of (2ν)−1/2. Second, many quantities of interest are
nonlinear functions of the knowns, which means that they will
not be normally distributed even if the knowns have Gaussian
error. In fact, many nonlinear estimators do not even have finite
variance, so the propagated SE is at best a sort of asymptotic
approximation. A simple example of this is the estimation of a
reciprocal, y = A ≡ 1/a: If y has normal error, a has infinite
variance, and when σA is as large as ∼ |A|/3, this will manifest as
a clear failure of the central limit theorem, meaning a and its
error cannot be estimated by sampling.35 (Of course A is well-
behaved.) Confidence limits do remain defined in such
situations, and they can be estimated through Monte Carlo
simulations.4,31 A hallmark of nonlinear estimators is
asymmetric distributions, and a guide to when these will be
problematic is a 10% rule of thumb:9 If σa/|a| < 0.1, the true ±
distances from the mean for 68% probability will be within 10%
of σa. Finally, all error propagation here has been first-order.
There are programs available for obtaining SDs to higher
order.32 However, when such corrections are significant, it
seems likely that the asymmetry problem will anyway require
Monte Carlo simulations for precise determination of
confidence limits.
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