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ABSTRACT: The method of least squares (LS) yields exact solutions
for the adjustable parameters when the number of data values n equals
the number of parameters p. This holds also when the fit model consists
of m different equations and m = p, which means that LS algorithms can
be used to obtain solutions to systems of equations. In particular,
nonlinear LS solves systems of nonlinear equations. An important
example in chemistry is the case of reagents whose concentrations are
coupled through multiple equilibrium relations. The capability of
nonlinear LS in this application is examined for three programming
environments, Excel Solver, FORTRAN, and KaleidaGraph, on a
number of equilibrium problems having up to 10 unknown concentrations. FORTRAN and KaleidaGraph perform well in all the
examples, but Solver presents difficulties that render it inadequate in several cases unless the problem is reformulated in terms of
a smaller number of adjustable concentrations. When the input quantities (equilibrium constants, prepared concentrations) have
uncertainty, the calculations can also be used to propagate these uncertainties into the derived quantities.
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Practically every scientist and every undergraduate science
major knows about the method of least squares (LS) for

fitting data to a straight line. Most also understand that the LS
solution is obtained when the number of data points n exceeds
2, yielding overdetermined equations. With just two (different)
data points, the solution becomes an exact algebraic solution.
This example involves a single equation, y = a + bx. The same
considerations apply to other equations, linear and nonlinear,
having p adjustable parameters: The LS solution occurs when n
> p, an exact solution (in principle) when n = p, and an infinite
number of solutions when n < p.
Probably fewer scientists appreciate that the same consid-

erations apply when the fit model includes two or more
equations. As a simple example, some of the data (n1 points)
might be fitted to one straight line, the rest (n2) to a second
straight line, giving p = 4. As long as n1 and n2 are both >2, we
obtain LS solutions for both straight lines, with parameters
identical to those that are obtained from separate fits. However,
in general, the estimates of the parameter standard errors (SE)
are different, because the pooled sum of squared residuals
(SSQ) is used to scale the parameter variances in the combined
fit in place of the separate SSQs for the individual fits.1

More interesting are cases where the multiple equations in
the fit model share some parameters, for example, a common
intercept or a common slope in the fit of data to two or more
straight lines. We can obtain multiple estimates of the common
parameters from separate fits and then average, but the
statistically optimal approach is to estimate them from a single,
combined or global fit.2 In the two-straight-lines example, a
common parameter reduces p to 3, and we obtain a LS solution

as long as both n1 and n2 ≥ 1 and n1 + n2 > 3. We obtain an
exact solution when one of these n’s is 1 and the other 2.
Taking this case to the extreme, suppose there are m

equations in the model, with m > p. We again obtain a LS
solution as long as there are data values for all m equations. An
example from the physical chemistry teaching literature is the
van der Waals equation for a gas, which has two parameters that
can be obtained from three equations for the behavior at the
critical point. Just two of these are used for an exact solution,3,4

but all three can be used in a LS solution.5

Ordinarily, we think of the method of least squares as a way
to estimate unknown parameters and their uncertainties from
data in situations where either n > p or (much less commonly)
where m > p, giving statistical degrees of freedom ν = n − p or
m − p > 0. However, common LS algorithms work fine for ν =
0, and I have shown recently how LS can then be used as a tool
for error propagation.6 My illustrations were confined to the
usual situation where there is a single equation in the fit model.
Here, I extend those considerations to cases where the number
of equations exceeds one, leading to systems of equations,
linear and nonlinear, in which the number of equations equals
the number of unknowns. Important chemistry examples
include coupled equilibria involving acids and bases, limited
solubility, and complexation. My emphasis is on obtaining the
solutions to such systems; however, where uncertainty can be
ascribed to the input quantities, the same calculations can yield
propagated uncertainties in the derived quantities.6
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Methods for numerical solution of systems of equations
include one-step procedures like matrix inversion for linear
systems, and iterative methods, like Newton−Raphson,
successive approximation, and bisection for nonlinear systems.7

Most of these have been discussed in this Journal,8−17 and have
been implemented with pocket calculator strategies13,15 and
spreadsheets, especially Microsoft Excel.10,14,16,17 The succes-
sive approximation methods work best when reduced to a
single equation in one unknown, as they are sensitive to initial
guesses for multiple variables and equations. The spreadsheet
approaches mostly employ Excel’s Solver routine and are not so
limited; however, the methods for coupled equilibria have
emphasized ways to reduce the number of equations to be
solved. Here, I will use nonlinear LS (NLS) algorithms to
obtain concentrations for all m species directly from the m
equations defining the equilibrium relations, and mass and
charge balance, the most basic relations describing the
equilibria. To implement this approach, one must be able to
fit different data points to different equations, and that requires
slightly different coding in different programming environ-
ments. Accordingly, I will illustrate using Excel Solver,
KaleidaGraph (Synergy Software),18 and FORTRAN, with
comparisons of their performance, in particular their con-
vergence behavior for initial values far from the solutions, which
is an indicator of the effort required to obtain correct results.

■ BACKGROUND
The method of least squares obtains solutions for unknown
parameters by minimizing the sum of weighted squared
residuals,

δ= Σwi i
2

where δi is the calculated-observed residual for the ith point,
and wi is the weight (= 1 for unweighted fitting, ∝1/σi2 for
minimum-variance estimation when the data vary in
precision1). For application to the solution of systems of
equations, each i must refer to a different equation, with the
number of equations equaling the number of data points. On
solution, each δi is exactly zero, giving = 0. However, in
practice, the computational methods are limited in precision
and will converge on just a very small value for . For systems
of linear equations, convergence occurs (in principle) in a
single computational step; however, the more interesting
nonlinear applications require iteration from a set of initial
estimates provided for the unknowns.
The idea of using least squares to solve equations is not new.

Press et al.7 mention it briefly near the end of Chapter 9 but
dismiss it because of concerns about the problem of multiple
local minima, a known (but usually manageable) problem of
nonlinear LS. However, there are powerful methods for finding
these minima, especially the Levenberg−Marquardt algo-
rithm,7,19 which ensures that some minimum will be found.
And knowledge that the correct solution should yield = 0
makes it easy to recognize incorrect solutions associated with
local minima, after which one can revise the initial estimates
and try again. In fact, Christian and Tucker long ago provided a
general purpose program (SEQS) implementing this ap-
proach.20,21 Today it is easy to do the same with micro-
computer spreadsheet and data analysis programs, as I will
illustrate.
The residual δi in the sum of squares is the mismatch

between calculated and observed values for the ith point. For

the KaleidaGraph program, one must prepare an x−y plot
before executing a fit, and because of that it is convenient to
write all equations in the form f = 0, with the plotted y values
(“observed”) all being 0. For example, the equation, a + bx = 3
is written as f = a + bx − 3 = 0. There can still be computational
difficulties when the typical magnitudes of the δi vary widely, so,
e.g., in a particular case, this equation might better be expressed
as g = 1 + bx/a − 3/a = 0.

■ ILLUSTRATIONS

Roots of Polynomials

Consider first the simplest problems, involving a single
equation. Bamdad has treated 11 different equilibrium
problems that can be expressed as a cubic polynomial in a
single unknown, and has shown results for three different
successive approximation algorithms and a bisection routine on
a pocket calculator.15 Only the last of these yielded results in all
11 cases. I will illustrate the LS approach on his seventh
example, where two of the successive approximation methods
diverged.
This example involves HCN ionization in water, for which

there are 4 equations for 4 unknown concentrations, [H3O
+],

[CN−], [HCN], and [OH−], units mol/L:

= = ×+ − −K [H O ][CN ]/[HCN] 6.2 10a 3
10

(1a)

= = ×+ − −K [H O ][OH ] 1 10w 3
14

(1b)

+ = = ×− −[CN ] [HCN] [HCN] 1 10 M0
6

(1c)

= ++ − −[H O ] [CN ] [OH ]3 (1d)

The first two equations express the ionization equilibria for
HCN and H2O, the third is mass balance for CN species
starting with 10−6 M HCN, and the fourth covers charge
balance. Solving for [H3O

+] and representing it by a, we obtain
the cubic equation,

+ − + − =a K a K K a K K( [HCN] ) 03
a

2
w 0 a a w (2)

To solve eq 2 in Excel with the LS method, we might use the
spreadsheet illustrated in Figure 1. The constants are stored in

B4:B6, and cells C3:E3 are populated using the equations
shown. The concentration (C3) is expressed in terms of its
logarithm in B3, a useful device for keeping the concentration
positive.17 The sum of squares is a single term in E3, which
becomes the minimization target for Solver, with B3 being the
quantity varied. The quantities in row 3 are converged results.

Figure 1. Excel spreadsheet for the root of eq 2 ([H3O
+], in mol/L),

showing converged results from minimizing E3 with Solver, by varying
B3. Precision is for numerical purposes only.
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Note that eq 2 has been scaled by 1027 in D3. Without
significant scaling, Solver quits iterating before achieving the
solution, evidently a manifestation of its known difficulty
dealing with very small numbers (Carl Salter, private
communication). Even with such scaling, this routine converges
for only a small range of values of B3, from −7.2 to −6.6;
outside this range, it jumps to C3 = 0 and takes this as the
solution. (There is another root at C3 = −5.8 × 10−10, which is
inaccessible to C3 with its exponential definition.) Changing
units to millimolar (mM), micromolar (μM), and nanomolar
(nM) (in which, e.g., Kw becomes larger by factors of 106, 1012,
and 1018, respectively) reduces the need for scaling but does
not expand the range of B3 values for convergence. Nor does
constraining B3 help.
Since here there is only a single contribution to the sum of

squares in E3, one can alternatively use Solver in its root-
finding mode, targeting D3 for the value of C3 that yields D3 =
0. In this mode, I achieved correct convergence for B3 values
ranging from −7.2 to 3.2. However, at the upper end of this
range, Solver sometimes claimed to have found a solution when
it actually had not, or contrariwise, it sometimes pronounced
“no solution” when it had converged on the correct value. Also,
sometimes it required a second pass, after stopping on a value
close to the answer. I could find no simple connection between
such behavior and values entered for Solver’s Options.
To solve this problem in KaleidaGraph (KG), we use its

General routine. This is an example of a NLS algorithm
where the user can specify the fit function. Simple fit models
(e.g., a + b*x for a straight line) can be entered directly in the
Define box that opens when General is selected under the
Curve Fit menu; for more complex models it is convenient
to use the Macro Library. To execute a fit, we must first
prepare an x−y plot, and in so doing, we must also deal with a
nuisance quirk of the KG program, a requirement for at least
three data points before it will proceed to a solution. I discussed
this problem in ref 6, in which I noted that this limitation is not
logical, in that it applies irrespective of the number of adjustable
parameters. For the present example we enter the values 0, 1, 2
in rows 0−2 of the first column (c0) in the data sheet (our x,
needed for plotting but values unimportant here), and zeroes
beside them in column c1. The latter will be our y values, as we
will write all equations in the form f(x) = 0. We pick
Scatterplot under the Gallery menu and select the
first column for x and the second for y, producing the plot from
which we will invoke the fit. We then select a fit model name
from the General submenu under Curve Fit and obtain
results illustrated in Figure 2, which includes a propagated error
in a, obtained as described below. Here, the quantity to the
right of the = sign in the results box has been entered in the
Define box, and the quantities Ka, Kw, and C0 have been
assigned numerical values in the Macro Library. Correct
convergence occurred for initial values of a as much as 16
orders of magnitude too large, but only for a factor of 2 too
small. Fast (∼1 s) convergence was obtained for all 11
examples in ref 15 using the initial value a = 1.
The propagated error in [H3O

+] in Figure 2 was obtained for
assumed σ = 1 × 10−11 for Ka, using a weighted fit.

6 For this, we
need σy, which we obtain by propagating the error in Ka into y.
Ka occurs in all but the first term in eq 2, with the dominant
variance contribution coming from the third term; the
propagated error in y is 1.0242 × 10−24, which we enter in
the c2 column (“sig”) in the data sheet. But this is for a single
value, and we cannot use it for all 3 values, as that will

overweight the data. This problem is discussed in ref 6 and here
in the Supporting Information. Figure 2 shows one way to deal
with it: greatly downweight two of the three values by assigning
them large σ values. In this case, with only Ka considered
uncertain, we can obtain the same results by rerunning the fit of
Figure 2 with Ka altered by its uncertainty, e.g., using Ka = 6.1 ×
10−10, and noting the resulting change in a.
Multiple Equations

Consider a system of 3 linear equations in 3 unknowns. The
Excel spreadsheet counterpart to Figure 1 might now contain
the 3 unknowns in C3:C5 and the 3 equations in D3:D5, in
place of the single entries in C3 and D3. Then, E3 would
contain "=D3^2 + D4^2 + D5^2" and would be the target for
minimization by varying C3:C5. The operations equivalent to
these are handled automatically in NLS algorithms, but they
require that the program associate the 3 equations with 3
different data points. Figure 3 shows how this can be done with

KG. Note that now the values of x are important, as they are
used to direct the algorithm to the different functions through
the shown nested conditional operator (?:), common to the C
programming languages. Accordingly, the three data points (all
y = 0) must have x values 0, 1, and 2 (or any value ≠ 1 or 2).
For comparison, a FORTRAN program might accomplish this
using the 3 lines at the bottom of the figure.

Figure 2. KaleidaGraph solution for the root of eq 2 ([H3O
+], in mol/

L), using the General least-squares routine. Also shown is the
relevant portion of the KG data sheet. The Error for a is the
propagated uncertainty for an uncertainty of 1 × 10−11 in Ka.

Figure 3. KaleidaGraph solution of 3 equations in 3 unknowns. The 4
lines at top are entered in the Macro Library, and “Eqns(x)” is
entered in the Define box. The data sheet from Figures 2 and 3 can
be used again here. The KG Eqns(x) statement might be replaced
by the 3 lines at bottom in the FUNCTION routine of a FORTRAN
program like Program 11-2 in ref 19 (with the Ei defined the same).
KK is the index (1−3) of the data points.
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The equations in this example are linear, so they can be
solved in a single step using matrix methods or determinants.
Next, we attack the equilibrium problem of Figures 1 and 2
from the bare-essentials approach: 4 equations, some nonlinear,
in 4 unknowns. To accomplish this, we extend the ideas in
Figure 3, as illustrated in Figure 4. For the KG fit, we use the

same data sheet in Figure 2 by just adding a fourth row having x
= 3. This fit yields nearly instantaneous results for initial values
between 10−15 and 106 for all 4 concentrations (see Supporting
Information for details and error propagation).
The Excel Solver solution required the indicated large scale

factor in E2 to avoid the small numbers problems. However,
with this (and even larger scaling), the computations did
converge correctly over at least 14 orders of magnitude
variation in the initial concentrations. For initial values more
than 2 orders of magnitude larger or smaller than the final
values, the program required two or even three passes to
achieve true convergence. In these cases, it incorrectly claimed
to have found a solution after the first (and/or second) pass,
but rerunning from that point produced further reduction in
SSQ and eventual convergence.
By using the method of eqs 1 and Figure 4, we have avoided

the question, “where does the H3O
+ come from?” The

stoichiometry approach assumes that there are two contribu-
tions to [H3O

+], say α and β, from the two ionization equilibria.
Accordingly, β = the present [OH−] and α = [H3O

+] − [OH−]
= [CN−]. The present approach can be even more advanta-
geous for polyprotic acids. Consider the dissolution of HCO3

−

in water. Now we have an additional ionization equilibrium and
an additional unknown, giving 5 equations in 5 unknowns.
Three of these are the equilibrium expressions for Kw, Ka1, and

Ka2. The other two are mass balance for the CO3 species and
charge balance:

+ + =− − −[HCO ] [H CO ] [CO ] [HCO ]3 2 3 3
2

3 0 (3a)

+ = + +− + − − −[HCO ] [H O ] [HCO ] 2[CO ] [OH ]3 0 3 3 3
2

(3b)

where the first term on the l.h.s. of eq 3b is the contribution
from the cation that accompanies HCO3

− in the solute. For
[HCO3

−]0 = 0.1 M, the resulting concentrations for the 5
species span a range >107, and the computations can be
sensitive to the choice of initial values. Using the same initial
value for all species, I initially achieved convergence with KG
for only the narrow range 10−3−10−1 M. However, through
judicious use of scale factors and ways of expressing the
equilibrium relations, I could expand the convergence range to
initial values from 10−10 M to 10 M (details in Supporting
Information). Figure 5 shows results obtained for this
bicarbonate concentration and for 10−6 M.

As is discussed in the Supporting Information, this example
proved demanding for my FORTRAN code, also. Without
scaling of the equilibrium relations for Kw and Ka2, my
Marquardt routine often converged to local minima associated
with negative concentrations, and a simpler routine that
employed scale factors to keep all concentrations positive
often produced fatal numerical errors. Scale factors of 105 and
103 for the Kw and Ka2 equilibria, respectively, yielded correct
convergence over a wide range of starting concentrations.
The 0.1 M bicarbonate example was even more difficult to

treat using Excel Solver. Working in molar (M) concentration
units, I could obtain nearly correct results for the 3 large
concentrations but not the two smaller ones, even starting

Figure 4. Treatment of HCN ionization equilibria for [HCN]0 = 10−6

M using KaleidaGraph (top) and Excel Solver. The equations at top
are entered in the KG Macro Library; the first 7 define constants
and assign the 4 variables to m1-m4, and the next 4 express eqs 1. The
fit model Eqns(x) uses the conditional operator to designate E1 for
the first data point, E2 for the second, etc., and is entered in the
Define box. The same 4 equations are entered in D2:D5 of the Excel
worksheet, as shown at bottom. The target for minimization E2 is the
sum of the squares of these equations scaled by 1014. Here, the
concentrations (in C2:C5) are determined by their logarithms in
B2:B5, e.g., by C2 = 10^B2.

Figure 5. KaleidaGraph results for dissolving HCO3
− in water at

indicated total concentrations (all concentrations in M). The
calculations used Ka1 = 4.3 × 10−7 and Ka2 = 4.8 × 10−11.
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within a factor of 2 of their correct values. Scaling the equations
to change their relative significance did not help. Working in
millimolar (mM) units and scaling the equilibrium equations
for Kw and Ka2 finally gave accurate concentrations for all 5
species. However, these results would have been difficult to
achieve without prior knowledge of the correct answers. For
these reasons, I conclude that Solver fails this test.
The KaleidaGraph program is limited to 9 adjustable

parameters in its LS routines. Thus, with cases like the third
example in ref 17, where there are 10 species, some reduction
must be done in order to solve the problem in KG. An obvious
choice in acid−base problems is to replace [OH−] with Kw/
[H3O

+]. KG also limits nesting in the conditional test
statements used in Figures 3−5 to a depth of 5. However,
one can define a two-step sort here, through the following
Library definitions:

FeHQ(x) is then entered in the Define box of a General
fit. Initial values of 0.01 for all concentrations instantly
produced the results in Figure 6, which agree completely
with those in ref 17, within the lower precision of the latter
(details in Supporting Information).

Comparison with Other Solver-Based Methods

Although the authors of ref 17 first mention “least squares” near
the end of their paper, their Solver-based method is
fundamentally the same as the present method, where I have
followed their implementation in the Excel spreadsheets shown
in Figures 1 and 4, including concentrations defined in terms of
the adjustable exponents of 10 in column B. While the latter
procedure ensures positive concentrations, my observations
indicate it can also lead to slow convergence. Although the ref
17 authors have chosen to reduce the number of simultaneous
equations by the number of equilibrium relations (expressing
some unknown concentrations in terms of others), there is no
fundamental reason for not retaining a different number of
equations and unknowns for simultaneous solution. This point
is illustrated with a specific example below (see also Supporting
Information).

I have tested the ref 17 method on the demanding
bicarbonate example in both KG and Solver, for [HCO3

−]0 =
0.1 M. When [H3O

+] and [HCO3
−] were taken as the

optimization variables, I could not succeed with Solver but had
no problem with KG. Note that these two concentrations
represent the extremes in this system. When instead [HCO3

−]
and [H2CO3] were chosen, both programs worked well. These
results support the contention that Solver does not perform
well in small-number optimizations, and especially when the
optimization variables vary substantially in magnitude. As
further substantiation of this claim, for the problematic former
case, a simple trick yielded success with Solver for initial values
ranging over 15 orders of magnitude: Define the optimization
variable for [H3O

+] as a quantity larger by a factor of 107,
making it comparable to [HCO3

−]. (Details can be found in the
Supporting Information.)
De Levie’s method in ref 16 also involves reducing the

equations to a small number, just one in his first example
(Cd2+−Cl− complexation), two in his second (Hg2+ with Cl−

and OH−). This method requires some algebraic manipulation
of the basic equations that many users may find nontrivial, so it
is of interest to see how well the present approach works in
these cases. There are 6 equations in 6 unknowns in the first
example, and KG yielded correct results with no modification of
the basic equations. However, for the second example (9
unknown concentrations, for Hg2+, Cl−, OH−, 4 HgCl
complexes, and 2 HgOH complexes), KG initially failed unless
provided with initial values that were practically correct. But
this example involves products of very large binding constants
K and very small concentrations, and results in such cases can
be sensitive to just how the program does the computations. A
very simple change produced immediate success and confirmed
that this large−small number situation was the problem: The
equations were expressed in terms of the reciprocal K’s
(dissociation constants) instead of the K’s, e.g., the equation for
[HgCl2] was written as

instead of as

where K2 is β2 in Figure 3 of ref 16 (= 1013.22), and Ki2 is its
reciprocal. In other words, dividing by 10−13.22 works, while
multiplying by 1013.22 fails, an example of how subtle details can
spell success or failure in such computations. Changing to
millimolar (mM) concentration units also yielded success. For
example, in eq 5b, this reduces K2 by a factor of 106 and
increases [Hg2+][Cl−]2 by 109, producing at least 9 orders of
magnitude reduction in the extremes of the multipliers in eq 5b
in molar (M) units. In millimolar units, KG converged correctly
for initial values (all the same) from 10−6 to 300 mM. A non-
Marquardt FORTRAN code that uses scale factors to keep all
concentrations positive converged on correct results for initial
concentrations from 0.003 to 100 mM. Excel’s Solver did not
succeed for any single initial concentration for all species
(details in Supporting Information).
As has already been noted, one can always limit the

specifically optimized variables to a chosen subset of the
unknowns, while still adjusting the other values in each
computational iteration. With its 9 unknowns, this last example
is a good one on which to illustrate this point, since
convergence difficulties generally decrease as the number of

Figure 6. Results for reduction of Fe3+ by hydroquinone in the
presence of acetic acid, example 3 from ref 17. Concentrations in
molar (M).
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unknowns is decreased. In KG, for example, in place of E1 in
eq 5b, we can write

to explicitly compute [HgCl2] from [Hg2+] and [Cl−]. We then
remove HgCl2 from the list of optimized parameters and E1
from the equations. Doing this for all complexes other than
HgCl+ and HgCl2 reduces the number of equations and
unknowns to 5, and with this model, I obtained convergence in
KG working in molar concentration units, for initial
concentrations (all the same) from 10−7 to 10−2 M. Doing
the same for HgCl+ and HgCl2 reduces the equations and
unknowns to 3, equivalent to the method of ref 17. With the
three balance equations being mass balanced for Hg, Cl, and
OH, I found that the convergence range was actually reduced
for KG, from 10−6 to 10−3 M. Further equation reduction
requires algebraic solution for one of these three concentrations
in terms of the others, for example, solving either the Hg mass
balance equation or the OH balance for [Hg2+]. The former
choice gave a comparable convergence range, 10−6 to 10−1 M;
the latter gave expanded convergence, 10−10 to 10−3 M, but
requiring many more iterations. My efforts with Solver, working
in millimolar units, yielded complete success only for 2
equations in [Cl−] and [OH−], with the Hg balance equation
used to solve for [Hg2+]. This is equivalent to the approach in
Figure 3 of ref 16, except that only the expression for [Hg2+]
requires algebra beyond the definitions like eq 6. (More details
can be found in the Supporting Information.)

■ CONCLUSION
I have examined several nonlinear least-squares programs for
their ability to solve systems of coupled chemical equilibrium
equations in their most basic form, with each of p unknown
concentrations taken as an adjustable parameter obtainable by
minimizing the sum of squared residuals of the corresponding p
equilibrium relations. This approach is arguably the simplest
mathematically and the easiest to code for computation. For the
two desktop programs compared here, Excel Solver and
KaleidaGraph, the latter performed much more reliably,
yielding correct results over much larger ranges of input initial
values for the concentrations. Solver’s problems in dealing with
very small numbers and with adjustable parameters that span a
large magnitude range are a major drawback that can
sometimes be reduced to an inconvenience. But in several of
the present test cases, they prevented success unless the initial
values were unreasonably close to the solutions. Solver’s
frequent misreporting of its iteration results is more dangerous,
potentially leading users to accept incorrect results. The in-
house FORTRAN codes tested here were generally comparable
to KG in performance.
The number of optimized LS concentrations and equations

can always be reduced by using some of the equations to relate
concentrations, for example, removing [OH−] and the Kw
equation by replacing [OH−] with Kw/[H3O

+] in acid−base
problems. The concentrations so removed from the parameter
list are still adjusted iteratively in the computations, so their
correct values are available when the computations converge on
a solution. Such procedures are necessary for KaleidaGraph
with problems having more than 9 unknown concentrations, as
KG is limited to 9 LS parameters. Such reduction procedures
are at the heart of the methods of refs16 and 17, in both of
which Solver was used successfully to obtain the solutions.
However, in one of the present examples, dissolution of

bicarbonate, special scaling procedures were needed for success
with Solver in the method of ref 17, even though the original
problem had been reduced from 5 unknowns and equations to
just two. Similarly, Solver’s performance in the tests on the
Figure 3 example from ref 16 was greatly limited compared
with that for KaleidaGraph.
Solver’s “no convergence” results are a manageable problem,

because a user will almost always try another pass at the
problem. The false convergence reports are a more serious
concern. These appear to be cases where the Solver Marquardt
routine “hangs up” on a local near-minimum. I checked this
possibility on several occasions by taking as initial values for the
KG version of the same problem the “converged” Solver results,
copied to 11 significant figures. KG always proceeded to a
correct solution in such tests, though sometimes requiring tens
of thousands of iterations! (This test is not perfect, because
there are still differences in machine accuracy and 11 decimal
digits, but it does substantiate the local minimum explanation.)
Solver could sometimes be “jogged” to converge further by
altering one or more equations or changing their significance in
the sum of squares through scale factors, but this is not a
practically useful approach for most users; nor can it be relied
upon to work in all cases.
It is interesting that the present all-equations approach arises

more naturally in the Solver environment than it does for NLS
algorithms like KaleidaGraph’s General routine. In the latter,
one must employ unorthodox methods to associate each data
point with a different equation. In Excel on the other hand, the
different equations are entered in cells in the spreadsheet, and
the sum of their squares is straightforwardly designated as a
target for minimization by Solver. It is easy to imagine that the
present approach has been tried previously by Solver users and
then abandoned because of Solver’s numerical limitations. The
present tests show clearly that those limitations are not
“ordained by nature”. In view of the widespread use of Solver
for data analysis by many scientists and educators, it would be
good if the maintainers of the Solver program could be
persuaded to fix its problems.
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