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ABSTRACT: In a course on chemical applications of symmetry and group theory,
students learn to use several useful tools (like character tables, projection operators, and
correlation tables), but in the process of learning the mathematical details, they often
miss the conceptual big picture about “why” and “how” symmetry leads to the quite
dramatic consequences that it does. This pedagogical gap is addressed in this paper by
using one of the simplest chemical model systems, the particle in a box, along with a
simple symmetry operator, parity, to get a clear understanding of the consequences of
symmetry. The analysis of the particle-in-a-box model is extended by analogy to
molecules, and connections are made to chemically important concepts like symmetry
labels of molecular states, spectroscopic selection rules, and symmetry adapted linear
combinations of orbitals.
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■ INTRODUCTION
Application of molecular symmetry and group theory is
widespread in chemistry. It is used for classification of
molecules, labeling molecular electronic states and vibrational
normal modes, bringing about simplifications in the theory of
chemical bonding, and explaining molecular spectra. Con-
sequently, the study of the chemical applications of molecular
symmetry is essential for a student majoring in chemistry. At
the advanced undergraduate or graduate level, the typical group
theory course in chemistry focuses on irreducible matrix
representations of point groups and the use of character tables
of these representations for determining symmetry character-
istics of molecular wave functions, Hamiltonian matrix elements
and spectroscopic selection rules.1 One of us (Anirban Hazra)
was the instructor for such a course (titled “Symmetry and
Group Theory”) given three times from 2011 onward at the
Indian Institute of Science Education and Research (IISER)
Pune, while the other author (Meghna A. Manae) was initially a
student in the course and later assisted in teaching. The first
time we taught this course, we sensed that the majority of
students including those intending to specialize in physical
chemistry found it difficult to take home the big picture about
how symmetry simplifies chemistry. The students, for the most
part, looked at the course as a “mathematical methods course”
where one learns to apply techniques like using character tables
and projection operators. We, however, wanted the course to
be more intuitive and understanding based. The approach
described in this paper is a result of our attempt to enable
students to get a conceptual understanding of what is behind
these techniques and why symmetry works. This proved to be
very successful when we taught the course the second time

onward, and we found strong student engagement with it in the
classroom. We feel that this approach will be useful for
instructors teaching symmetry concepts in advanced physical
chemistry, spectroscopy and quantum chemistry courses to
upper-division undergraduates and graduate students.
For students, the reason for missing the conceptual picture of

how symmetry simplifies chemistry is largely related to the
difficulty in visualizing complex and multidimensional molec-
ular Hamiltonians, molecular wave functions, and symmetry
operators that are central to the applications of symmetry in
chemistry. Consider, for example, the following application
taught in a group theory course: An electronic transition in a
molecule will be allowed if the direct product of the irreducible
representations of the two electronic states involved in the transition
is or contains the irreducible representation to which the coordinate
x, y, or z belongs. This result implies that only under specific
symmetry conditions, the integrals

∫ ∫ ∫ψ ψ τ ψ ψ τ ψ ψ τ* * *x y zd , d or di j i j i j

where ψi and ψj are the wave functions of the two electronic
states (τ denotes all the coordinates on which these wave
functions depend), can have nonzero values. It is hard for
students to go beyond the techniques involved in determining
irreducible representations and direct products, and get a feel
for why this result is true and how it is connected to the
symmetry of the molecule or the molecular Hamiltonian. Our
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goal, in this article, is to propose a way to address this difficulty.
Our approach is to use a simple and familiar one-dimensional
model Hamiltonian having only one nontrivial symmetry
operation to discuss various group theoretical concepts,
techniques and results (including the one described above).
The simplification to a single dimension and single symmetry
operation allows students to see through the mathematics,
visualize the results, and get a conceptual understanding of the
implications of symmetry in chemistry. We then extend these
results by analogy to molecules, whereby students can make
connections between the ideas in the simple model and real
molecular applications of symmetry.
We use the one-dimensional particle-in-a-box (PIB) model

and perhaps the easiest to understand nontrivial symmetry
operatorthe one-dimensional parity operatorto analyze the
role of symmetry. The PIB model, due to its simplicity, is
routinely used while teaching quantum chemistry. Besides using
this model to demonstrate the process of solving the
Schrödinger equation and examining the resulting eigenvalues
and eigenfunctions, this model has been invoked widely to
explore various important concepts in quantum chemistry. It
has been used to aid in the understanding of perturbation
theory,2 the phenomena of resonance stabilization, and the role
of symmetry in degeneracy.3 It has been used to clarify the
concept of the variational principle and to introduce the
projection operator.4 The two-dimensional PIB has been
employed to better understand the nature of multidimensional
wave functions.5 Our use of the PIB in the present paper to
understand the role of symmetry in chemistry further testifies
to the versatility of this model for teaching chemical concepts.
In the next section, we analyze the symmetry characteristics

of the PIB model. Following that, we consider various different
applications of symmetry; in each case, first for the PIB model
and then for molecules. Finally, we discuss the response of
students to the approach and present our conclusions.

■ SYMMETRY CHARACTERISTICS OF THE
PARTICLE-IN-A-BOX MODEL

The one-dimensional PIB problem in an introductory quantum
chemistry text is usually stated in the following way: Consider a
particle of mass m which is confined to move along the x axis
between x = 0 and x = a, i.e., the potential energy is zero in the
range 0 ≤ x ≤ a and infinite everywhere else. Obtain the
quantum mechanical stationary state wave functions and
corresponding energies of the particle.
A slight change in the choice of the coordinate system, in

particular the choice of origin x = 0, can make the symmetry in
the Hamiltonian explicit. Although this leads to changes in the
mathematical representation of the system, it does not affect its
actual physical properties. It is therefore natural to make a
choice of mathematical origin that allows the symmetry of the
system to be most easily exploited. We take x = 0 as the center
of the box, whereby the region of zero potential is defined
between −a/2 ≤ x ≤ a/2 (see Figure 1), and we refer to this
system as the particle-in-a-symmetric-box (PISB) model. The
potential energy function V(x) is now an even function.

− =V x V x( ) ( )

Like any other symmetry property, the symmetry of the
potential energy function can be expressed mathematically by
considering a transformation under which the function is
invariant. In this case, the transformation is the one-

dimensional parity operator P̂ defined by its action on a
general function f(x) as

̂ = −Pf x f x( ) ( )

The invariance of the potential energy of the PISB under the
operation of parity is then expressed as

̂ =PV x V x( ) ( )

As a consequence, the Hamiltonian commutes with the
parity operator (see Proof 1 in the Supporting Information),
i.e.,

̂ ̂ = ̂ ̂ − ̂ ̂ =H P HP PH[ , ] 0

This, considered along with the theorems that commuting
operators have a common set of eigenfunctions, and one-
dimensional bound state Hamiltonians have nondegenerate
eigenfunctions,6 leads to the result that all the eigenfunctions of
the Hamiltonian are eigenfunctions of the parity operator. It
can be shown easily that the eigenvalues of the parity operator
can only be unity or negative unity and that all the
eigenfunctions of the parity operator are either even or odd
functions [see Proof 2 in the Supporting Information].
It is very important for the student to fully comprehend the

significance of this result: Even before solving for the
eigenfunctions of the PISB, one can say based on the symmetry
of the Hamiltonian that the eigenfunctions will be either even
or odd functions. In other words, the symmetry of the
Hamiltonian is ref lected in its eigenfunctions. All the applications
of symmetry in chemistry are due to this central result. In the
next section, we will discuss in detail the consequences of this
result in the context of chemical applications.

■ IMPLICATIONS OF SYMMETRY IN CHEMISTRY
For a molecule belonging to a particular symmetry point group,
by definition, operating on the molecule with a symmetry
operation from the point group will yield an equivalent
structure of the molecule. Just like in the PISB, the molecular
Hamiltonian can be shown to commute with the symmetry

Figure 1. First four eigenstates of the PISB. The even eigenfunctions
are shown with solid red lines states, while the odd eigenfunctions are
shown with dashed blue lines.
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operations in the point group (see, e.g., ref 1c). Analogous to
the PISB, even before solving the molecular Schrödinger
equation which is a rather hard problem, one can say something
about the symmetry properties of the molecular eigenfunctions.
In particular, one can show that every eigenfunction forms a
basis for some irreducible representation of the point group to
which the molecule belongs [see Proof 3 in the Supporting
Information]. This symmetry property of the eigenfunctions is
a multidimensional extension of the concept of even and odd
functions, and leads to all the other implications of symmetry
described in the following subsections.
Symmetry Labels of the States

In the case of the PISB, all the eigenstates are either even or
odd, and this property can be used to label the states as shown
in Figure 2a. Analogously, because each electronic state in a

molecule is a basis for some irreducible representation of the
point group of the molecule, the label associated with the
irreducible representation (the corresponding Mulliken sym-
bol) can be used to label the state. For instance, in the case of
water which has C2v symmetry, the electronic states are labeled
using symbols A1, A2, B1, and B2 as shown in Figure 2b.7

Projection Operator

Symmetry adapted linear combinations (SALC) of orbitals,
which are used as a basis to get approximate solutions of the
Schrödinger equation, are obtained using projection operators.
To better understand projection operators, we construct them
for the symmetry operations of the PISB and use them for
obtaining even or odd functions from general one-dimensional
functions, and then extend the idea to molecules. The
symmetry operations of the PISB, namely the identity
operation Ê and parity P̂ form a group. The character table
for this group is

and the two projection operators +̂P and −̂P can be constructed
as

̂ = ̂ ± ̂±P E P
1
2

[ ]

To see the effect of the projection operators, we expand any
well behaved one variable function as a linear combination of
eigenfunctions of the PISB (which are sine and cosine
functions) as these form a complete basis of the space of
one-dimensional functions. This expansion can alternatively be
thought of as a Fourier series expansion. By grouping even and
odd functions together in the expansion, a general function f(x)
can always be written as a sum of some even function feven(x)
and some odd function fodd(x)

= +f x f x f x( ) ( ) ( )even odd

The projection operator +̂P operates on f(x) and projects out
the even part of the function as shown below.

̂ = ̂ + ̂ = ̂ +

+ ̂ +

= + + − =

+P f x E P f x E f x f x

P f x f x

f x f x f x f x f x

( )
1
2

( ) ( )
1
2

[ ( ) ( )]
1
2

[ ( ) ( )]

1
2

[ ( ) ( )]
1
2

[ ( ) ( )] ( )

even odd

even odd

even odd even odd even

Similarly, −̂P operating on f(x) projects out the odd part of the
function. Thus, the projection operators give symmetry adapted
functions.
Analogously, the projection operators in molecules give

functions which are the basis of some irreducible representation
of the point group of the molecule. The projection operator in

the case of molecules, ̂P j
, to obtain functions which form the

basis for irreducible representation j, is defined as (see, e.g., ref
1a),

∑ χ̂ = ̂P
l

h
R R( )j j

R

j

where lj is the dimension of the irreducible representation, h is
the order of the group, R̂ is a symmetry operator in the group,
χ(R)j is the character of the matrix corresponding to operator R̂
in the jth irreducible representation and the summation is over
all the symmetry operations in the group. It is easily seen that
the operators ±̂P for the symmetry group of the PISB are special
cases of this general formula.
Hamiltonian Matrix Elements

One of the most important applications of quantum chemistry
is the calculation of energy by solving the Schrödinger equation.
While exact solutions are possible for one-electron systems like
the hydrogen atom, in the case of molecules, only approximate
solutions can be obtained. Approximate approaches, like
perturbation theory and the variational method, involve the
calculation of Hamiltonian matrix elements

∫ ϕ ϕ τ= ̂H H dij i j

where ϕk are wave functions, not necessarily eigenfunctions of
the Hamiltonian. The wave functions ϕk are often taken to be
SALCs using the projection operator technique discussed
earlier. In that case, just based on the symmetry properties of
ϕk, we can say whether the matrix element is zero or not.
For the PISB, if we take ϕj to be a symmetry adapted

function, i.e., it is either even or odd, it follows that ϕĤ j has the

same parity as ϕj. So the Hamiltonian matrix element can be
nonzero only if ϕi and ϕj have the same parity [see Proof 4 in
the Supporting Information]. By knowing that certain integrals
are zero just based on symmetry, we can save considerable

Figure 2. (a) Labeling of translational energy eigenstates (not to scale)
for the PISB; (b) labeling of electronic energy eigenstates (not to
scale) for the water molecule.
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amount of time that would potentially be used to evaluate these
integrals.
The analogy in the case of molecules is that, if ϕi and ϕj are

symmetry adapted functions, the Hamiltonian matrix element
can be nonzero only if ϕi and ϕj form a basis for the same
irreducible representation whereby the integrand transforms as
the totally symmetric representation of the group. The
Hamiltonian matrix is block diagonal according to the
symmetries of the basis functions as shown in Figure 3. In

the case of PISB, there are two blocks, and in the case of
molecules, the number of blocks is equal to the number of
irreducible representations of the symmetry group of the
molecule.
Notice that, in the previous two paragraphs we say “can be

nonzero” rather than “will be nonzero” because while the
integral will certainly be zero if ϕi and ϕj have different
symmetries, the integral needs to be evaluated explicitly if ϕi
and ϕj have the same symmetry. The point is that the integral
of an even function taken over symmetric limits is not zero
because of symmetry reasons, but for instance, as shown in
Figure 4 can have a zero integral because of its specific

definition. Incidentally, the function in Figure 4 is constructed
by taking the product of the ground and second excited state
eigenfunctions of the PISB which are both even; their
orthogonality makes the integral zero.
Spectroscopic Selection Rules

In the case of the PISB, consider the following integral:

∫ ψ ψ τ*
−

x d
a

a

i j/2

/2

where ψs are the eigenfunctions of the PISB which are either
odd or even functions. Knowing that x is an odd function, we

can say that this integral can have a nonzero value only if ψi and
ψj are of opposite parity. If x were replaced by x2 (an even
function) in the above integral, the value of the integral can be
nonzero only if ψi and ψj are of the same parity.
We can now apply this logic to spectroscopic selection rules

of molecules, which dictate whether a particular transition will
be allowed or not depending on the value of the integral

∫ ψ ψ τ*Ô di jall space

where Ô is the dipole moment operator in the case of
absorption and emission spectroscopy, and an element of the
polarizability tensor in the case of Raman spectroscopy. When
symmetry operations of the point group are applied, the dipole
moment operator transforms like the coordinates x, y, and z,
while the elements of the polarizability tensor transform like the
binary products of the coordinates x2, y2, z2, xy, xz, and yz. The
above integral can be nonzero when the direct product of the
irreducible representations corresponding to the two states and
Ô (which can be looked up from the character table) is the
totally symmetric irreducible representation, or is a reducible
representation that when reduced contains the totally
symmetric irreducible representation.

Variational Calculation of the Wave Function

The variational theorem states that the expectation value of
energy obtained with any given trial function will always be
greater than or equal to the exact ground state energy of the
system. This is the basis of the variational method in quantum
chemistry. Although this method is usually applied to calculate
the approximate ground state energy, it can be used equally
effectively to calculate certain specific excited state energies by a
clever use of symmetry.
Consider a particle in a symmetric one-dimensional potential

(not necessarily a PISB potential) whose states we want to
obtain variationally. As proved earlier in the paper, the
eigenfunctions of such a system where V(−x) = V(x) will be
either even or odd functions. Consider the variational trial
function to be expanded as a linear combination of the PISB
eigenfunctions (which form a complete basis) where the
coefficients of expansion are the variational parameters. Now
suppose, in the linear expansion we choose only even PISB
eigenfunctions, then the variational procedure would give an
upper bound to the lowest-energy even eigenstate of the
system. Similarly, in the expansion if we choose only odd PISB
eigenfunctions, the variational procedure would give an upper
bound to the lowest-energy odd eigenstate. By restricting the
variational flexibility of the trial function using symmetry, we
can get the energy of not only the ground state, but an excited
state which happens to be the lowest-energy state of parity
opposite to the ground state.
In the case of molecules, consider the example of water

which belongs to the C2v point group. Since there are four
irreducible representations for this group, a trial function can be
chosen such that it is only composed of functions that form the
basis for one of the irreducible representations (this can be
done using projection operators). Then, the variational method
can be used to obtain the energy of not just the ground state
(A1 symmetry), but the lowest energy state corresponding to all
the other irreducible representations (A2, B1, and B2), which
will yield three excited state energies. The ordering of the
excited state energies cannot be determined by symmetry
considerations and can be obtained only after performing the

Figure 3. (a and b) Panels diagrammatically explain the diagonaliza-
tion of the Hamiltonian written in a basis of SALC functions for the
PISB and water molecule, respectively.

Figure 4. Given function is an example of an even function whose
integral over symmetric limits goes to zero.
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actual variational calculation. Similarly for different spin
multiplicities (noting that the molecular Hamiltonian com-
mutes with the spin angular momentum operator), the
variational method can be used to obtain the lowest energy
state of each multiplicity like singlet, triplet, quartet and so on.

■ STUDENT RESPONSE
As mentioned in the Introduction, of the three times we taught
the course Symmetry and Group Theory, we used the approach
described in the paper the second and third times. This
approach was introduced toward the later part of the course by
which time the students had already seen several group theory
concepts. After the ideas in the paper were discussed, students
collectively expressed that the concepts they had learned until
then were concretized, and they could get a physical feel for the
role of symmetry in chemistry. To get some more systematic
information on learning outcomes, we organized an interactive
session with a group of 47 students where we specifically
discussed this approach and then requested written feedback
about its effectiveness. The details of this assessment procedure,
including the description of the student group, the feedback
form, our analysis and a few verbatim quotes of the students are
given in the Supporting Information. We were happy to note
that a large fraction of students grasped the central idea that the
symmetry of the molecule is reflected in the Hamiltonian,
which in turn is reflected in the symmetry of the wave function
leading to all the different chemical consequences. They
expressed that the session helped them go beyond the
mathematics and get a conceptual feel for the various
implications that symmetry has in chemistry.

■ CONCLUSIONS
Understanding the implications of symmetry on a molecule
may seem daunting to students due to the multidimensional
nature of the molecular Hamiltonian and wave functions which
are hard to visualize. Utilizing the PIB, more specifically the
symmetric box in one dimension, we have proposed an effective
way to understand and explain the simplifications that
symmetry brings about in chemistry. The PISB serves as a
bridge between the abstract concepts in group theory and their
application to molecules. Using analogy as a pedagogical
technique, we discuss group theoretical concepts for the simple
PISB model and then extrapolate to molecules. This helps to
get conceptual understanding and also affords a broad
consolidated view of the various different results discussed in
a group theory course. Moreover, it aids in verifying intuition
about any new chemical implication of symmetry that one
encounters. When we taught symmetry concepts using this
approach, we found clear student engagement with it because
of its relative simplicity. On the basis of our positive experience
in using this method while teaching, we feel that the PISB
model will be a very effective tool for other instructors wanting
to communicate the conceptual basis of the applications of
symmetry in chemistry.

■ ASSOCIATED CONTENT
*S Supporting Information

The Supporting Information is available on the ACS
Publications website at DOI: 10.1021/acs.jchemed.5b00856.

Proofs for various theorems stated in the manuscript, a
homework assignment that instructors can use, a detailed
description of our evaluation of student learning, a

sample feedback questionnaire, and verbatim quotes
from some feedback questionnaires (PDF)

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: ahazra@iiserpune.ac.in.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful to the students who volunteered to attend and
give feedback in a session where we tried out the approach
discussed in the paper.

■ REFERENCES
(1) (a) Cotton, F. A. Chemical Applications of Group Theory, 3rd ed.;
Wiley India: New Delhi, 2008. (b) Carter, R. L. Molecular Symmetry
and Group Theory; Wiley India: New Delhi, 2009. (c) Bishop, D. M.
Group Theory and Chemistry; Dover Publications: New York, 2012.
(d) Hochstrasser, R. M. Molecular Aspects of Symmetry; W. A.
Benjamin: New York, 1966.
(2) El-Issa, H. D. The particle in a box revisited. J. Chem. Educ. 1986,
63 (9), 761.
(3) deSouza, R. T.; Iyengar, S. S. Using Quantum Mechanics To
Facilitate the Introduction of a Broad Range of Chemical Concepts to
First-Year Undergraduate Students. J. Chem. Educ. 2013, 90 (6), 717−
725.
(4) Casaubon, J. I.; Doggett, G. Variational Principle for a Particle in
a Box. J. Chem. Educ. 2000, 77 (9), 1221.
(5) Breneman, G. L. The two-dimensional particle in a box. J. Chem.
Educ. 1990, 67 (10), 866.
(6) Griffiths, D. J. Introduction to Quantum Mechanics; Pearson
Education: New Delhi, 2005.
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