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ABSTRACT: Matrix diagonalization, the key technique at the heart of modern
computational chemistry for the numerical solution of the Schrödinger equation, can be
easily introduced in the physical chemistry curriculum in a pedagogical context using
simple Hückel molecular orbital theory for π bonding in molecules. We present details
and results of computations, including both the quintessential examples of polycyclic
aromatic hydrocarbons discussed in text books and an interesting extension to a large
molecule, C60 (buckminsterfullerene), the first member of the fullerenes to be
discovered and synthesized, using a simple Excel spreadsheet-based VBA “application”
that we have developed.
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In 2011, Johnson and Engel1 published the results of a two-
year effort at a major research university in integrating

computational chemistry into the undergraduate physical
chemistry curriculum. Their comprehensive report also
reviewed earlier efforts at using computational molecular
modeling in undergraduate education over the past two
decades in the context of rapid advances in computer
technology. In discussing their pedagogy to train students in
using computational chemistry software, a key recommendation
of the latest revised guidelines for undergraduate education2

published by the American Chemical Society, Johnson and
Engel1 stated that (their) “course structure results in the
software being used as a ‘black box’ for the first few exercises,
which is difficult to address owing to the large amount of
background material needed to understand the Hartree−Fock
method.”
In 2009, we revised the physical chemistry curriculum at

Beloit College in light of the 2008 ACS guidelines2 that
explicitly stipulated the integration of computational chemistry
in the curriculum. Our approach has worked well with small
classes in a significantly redesigned version of the traditional
quantum chemistry course that now emphasizes molecular
modeling, visualization, and computational chemistry (and is
titled as such). In this article, we present details of a key
element of our approach, namely an introduction to the
principles of computational chemistry at an early stage of the
course using Excel-based computer laboratory exercises
assigned in the context of a detailed development of Hückel
molecular orbital (HMO) theory.3−6 As is well known, HMO
theory is conceptually very simple and is based on gross

approximations. However, MO energies and wave function
coefficients, traditionally computed by solving polynomial
equations using the method of secular determinants in linear
variational theory,3−7 yield excellent qualitative insights into the
behavior of hydrocarbons with π bonds, including predictions
of delocalization, aromaticity, π bond order, etc. Thus, the
theory has been an evergreen in introducing students to
quantum chemistry, given its distinguished history as one of the
first methods for computing such properties for conjugated
hydrocarbons, long before the advent of modern electronic
computers. It is also easy for students to connect the material
with their prior knowledge and insights gained in other
chemistry courses that they may have taken. (Typically,
students taking physical chemistry at Beloit have either taken
inorganic chemistry or organic chemistry, or are concurrently
enrolled in one of those courses.)
Our pedagogical approach utilizes the modern computational

technique for solving the Schrödinger equation using numerical
matrix diagonalization8 of the Hamiltonian matrix.3−6 This
eliminates the need for students to tediously solve polynomial
equations of large degree (corresponding to the number of
carbon atoms) based on secular determinants. A variety of
custom software9 and scientific computing packages and
libraries10 for matrix diagonalization are currently available
and have been used in teaching HMO theory.3,4,11 What is
novel about our approach is the systematic use of the
ubiquitous Excel software environment and its associated
spreadsheet cell (row, column) paradigm. In the context of
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HMO theory, this allows for the direct input of Hamiltonian
matrix coefficients into an Excel spreadsheet as two-dimen-
sional arrays with N rows and N columns, where N typically is
the number of carbon atoms. The matrix is then diagonalized
by invoking a macro as a menu item from the menu bar. It
should be noted that an Excel plug-in for matrix diagonalization
using Dynamic Link Libraries (DLLs) was described12 in this
Journal in 1993, but the DLLs are incompatible with modern
versions of the Microsoft Windows Operating System.

■ BACKGROUND: MATRIX DIAGONALIZATION IN
HMO THEORY

In simple HMO theory, the basis set for a N-carbon system is
the linear combination of N carbon 2p atomic orbitals (ao’s), a
gross approximation that however leads to great insights, both
into the chemistry and (we emphasize) into the techniques of
modern computational chemistry. Thus, the MO’s ψj are given
by

∑ψ ϕ=
=

cj
i

N

ij i
1 (1)

where cij is the coefficient contribution of the carbon 2p basis
function ϕi to the jth MO ψj.
The matrix formulation of the HMO theory Schrödinger

equation6,13 is then given by

=HC SCE (2)

where H is the N × N Hamiltonian matrix composed of
“energy” terms−the coulomb or resonance integrals Hij, S is the
N × N matrix composed of the overlap integrals Sij, and C is the
N × N matrix of coefficients cij (i indicates the basis function
and j indicates the MO) with each column representing an
eigenvector corresponding to a MO. E is the diagonal N × N
matrix containing diagonal elements that are the MO energy
levels, that is, eigenvalues.
In simple HMO theory for hydrocarbons, the coulomb

integral Hii is usually denoted by α, a negative number equal in
magnitude to the ionization energy of a carbon 2p orbital
electron. The resonance integral Hij is denoted by β, also a
negative quantity because it is a “bond” energy. Only
neighboring atom interactions are considered, that is, Hij = 0
for i ≠ j and |i − j| ≠ 1. Resonance integrals for non-neighbor
atom pairs are set to zero, as are all overlap integrals except for
those involving a single atom, that is, Sij = 0 (i ≠ j), and Sii = 1.
S then becomes the unit matrix. Applying these conditions
based on the simple HMO model, eq 2 reduces to

=HC CE (3)

and the (unknown) MO energy levels can be determined by
“diagonalization” of the known Hamiltonian matrix composed
of coulomb and resonance energy terms. In essence, the
diagonalization problem reduces to finding values for the matrix
elements in C and E, given H.13 Mathematically, this can be
achieved by premultiplying the left and right sides of eq 3 by
the transpose matrix Ct, since

= =C HC C CE Et t (4)

In the case of simple HMO theory, further simplification is
possible because the matrix C is real and symmetric, and
therefore Ct = C.
Computationally, the solution, like for many other problems

amenable to numerical analysis, is to start with an initial guess

for the matrix C and then iteratively compute values for E in eq
4 or its equivalent, attempting to reduce the values of all off-
diagonal elements to 0, a procedure described in detail in a later
section. The results of the “converged” solution provide all the
eigenvalues (energies that are diagonal values in E) and
eigenvectors (columns in C that provide the coefficients
contributed by each of the atomic orbitals to the MO wave
function represented by the column) in terms of the specific
finite basis set that was used. Because HMO theory is based on
gross approximations with complete neglect of multiple atom
overlap integrals and is expected to yield only qualitative
results, we can dispense with using numerical values for the
various integrals (matrix elements) and express all results in
terms of symbolic values of the carbon 2p orbital coulomb
integral α, and the nearest neighbor carbon−carbon resonance
integral β. Thus, using scaled reference values of 0 for α and 1
for β, respectively, the Hamiltonian matrix in simple HMO
theory is easily set up and diagonalized.

■ EXCEL VBA-BASED MATRIX DIAGONALIZATION
SOFTWARE DEVELOPED AT BELOIT COLLEGE

Diagonalization of Real, Symmetric Hamiltonian Matrices

The energies (eigenvalues) and wave functions (eigenvectors)
of the Hamiltonian matrix formulation of the Schrödinger
equation (an eigenvalue equation) in eq 2 can be obtained by a
number of sophisticated numerical techniques8 developed since
the advent of the computer. However, many of these
techniques are based on linear algebra and have been well
known to mathematicians for centuries. A specific method,
certainly not the most efficient but one that is easily understood
by beginners studying numerical methods or students with
limited exposure to linear algebra, is the Jacobi method for real,
symmetric matrices5,6,13,14 such as the matrices used in Hückel
MO and other quantum mechanical techniques. The Jacobi
method was adapted to work with computers in 1960 by
Greenstadt.15 Students are not required to know all the
algorithmic details or the computer code implementation,
except to understand that the basic principle involves iterative
minimization of the magnitude of all off-diagonal elements of
the matrix by a series of matrix multiplications involving
suitably constructed transform matrices C and their transposes.
The procedure is deemed to have converged when the largest
off-diagonal element is less than a certain value (very close to
zero) specified in the computer program. This termination
value is selected based on round-off and number representation
precision criteria for the programming language involved, and
the resulting diagonalized matrix E then has the energies as the
diagonal elements. Additionally, the final transformation matrix
C provides the eigenvector (wave function) coefficients.
Substantially more sophisticated and optimized techniques for
matrix diagonalization8 form the core routines of all computer
software currently available in computational chemistry,5,6 and
therefore the exposure to these principles is of great value for all
chemistry students today.
In the sections that follow, we present details of software

developed at Beloit College to diagonalize real symmetric
matrices using the Jacobi method, customized for HMO theory.
For flexibility and use in diverse computing environments, we
have developed MDIAG, an Excel application that uses
standard Excel Visual Basic for Applications (VBA) macro
code embedded into a workbook with a custom menu option
for invoking the matrix diagonalization macro. We describe the
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software and how it is implemented using the Hamiltonian
matrix for naphthalene in simple HMO theory as an example,
and then discuss an interesting contemporary and practical
application of HMO theory in studying the properties of C60
(buckminsterfullerene), developed as a class project by the
student coauthor (JL).

Matrix Diagonalization Using Excel VBAthe MDIAG
Custom Workbook

The HMO Hamiltonian matrix for the ten-carbon bicyclic
system naphthalene (C10H8) is easily set up (Table 1) using the
Hückel rules specified above, with a numbering scheme for
matrix element indices that begins with a bridging carbon as
shown in the accompanying graphic (Figure 1):

The actual computation of eigenvectors and eigenvalues for
this system using the Excel spreadsheet displayed in the
MDIAG workbook involves entering a label in row 1, column 1
(i.e., cell A1), the order of the matrix (in this case 10) in row 2,
column 1 (i.e., cell A2), and then the Hamiltonian matrix
elements corresponding to each of the coulomb (α = 0) and
exchange (β = 1) integrals, starting with row 3, column 1 (i.e.,
cell A3). Finally, the user selects the DIAGONALIZE custom
menu item to perform the computation, which is typically
completed in a fraction of a second for naphthalene. Figure 2
shows an actual screen capture of the Excel spreadsheet,
showing the custom diagonalization menu added to the Excel
standard menu bar, along with data and the results under the
“EIGENVALUE” and “EIGENVECTOR” headers. Each
specific eigenvalue is an HMO energy level and is displayed
in units of β, referenced to α as the zero of energy. For example,
the eigenvalue in the fifth column is actually α + 0.6180β.
Because α and β are both negative, the eigenvalue is actually
smaller than the reference energy α corresponding to the
carbon 2p ao. Thus, this eigenvalue corresponds to a bonding
MO. Each eigenvector corresponding to an HMO energy level
(a specific eigenvalue) is a column vector in that specific
column, with elements corresponding to cij in eq 3. j is the

column number, corresponding to the jth MO, and i is the
(relative) row number starting with i = 1 for first row of the
eigenvector coefficient listing.
In a typical 3 h computer laboratory session, students

working in groups of two were systematically able to set up and
diagonalize the Hamiltonian matrices for a series of open chain
conjugated hydrocarbons, starting with the “reference”
molecule with a single double bond, namely ethene, and
working their way up to hexatriene and octatetraene. They then
computed HMO energies and wave function coefficients for
benzene and polycyclic aromatic hydrocarbons (PAHs),
including naphthalene (Figure 2) and anthracene. A variety
of homework assignments based on the computations were
handed out in class. For example, these assignments included
computation of delocalization energies based on the
eigenvalues and electron densities and π bond orders based
on the eigenvector coefficients. It is particularly straightforward
to perform the tedious calculations for electron densities and
bond orders, especially for large molecules, using the Excel
formula bar feature and applying appropriate formulas to empty
cells in the spreadsheets after the results of matrix
diagonalization are displayed. The values for naphthalene are
included and highlighted in Figure 2. There are four different
values for the π bond orders computed for naphthalene,
indicating that the carbon−carbon bonds are not identical.
Students were asked to discuss the significance of the results by
comparing them to the results for benzene, where all five π
bond orders are identical. This can be rationalized on the basis
of canonical resonance structures for naphthalene that are not
equivalent, unlike the case for benzene. It is interesting to note
that recent ab initio calculations and experimental data16 are in
essential agreement with the predictions for naphthalene made
on the basis of simple HMO theory. Many similar exercises and
questions based on the structures of PAHs and other fused
carbon ring systems are discussed in detail in various
textbooks.3−7,13 We describe a novel application of our
MDIAG Excel workbook software in computing the HMO
theory-based properties of C60, a system of great contemporary
interest, in the section that follows.

■ APPLICATION IN A STUDENT PROJECT: C60
(BUCKMINSTERFULLERENE) HÜCKEL ENERGIES

The simple HMO eigenvalues for C60 (buckminsterfullerene),
colloquially known as “buckyball”, are difficult to obtain
analytically. In principle, the method of secular determinants
that has been traditionally used to obtain eigenvalues would
involve determinants of order 60. However, ingenious methods
that make use of the inherent icosahedral symmetry of the
molecule have been used to derive exact analytical solutions
that can be computed using a hand calculator.17,18 An
alternative is to set up the HMO Hamiltonian matrix for C60
and diagonalize it to obtain eigenvalues. This was done by one
of us (JL) as a student final project for the Molecular Modeling,
Visualization, and Computational Chemistry class at Beloit
College in Fall 2012, using the Excel MDIAG workbook
described above. The matrix was easy to set up because of the
symmetry. Verifying that the matrix is correct posed an
interesting problem. The three-dimensional cage structure of
C60 (a truncated icosahedron with 20 hexagons and 12
polygons) made numbering and counting carbons and
determining the nearest directly connected neighbors, required
for filling in nonzero matrix elements, nontrivial and confusing.
However, an easy method based on a graph theoretical analysis

Table 1. Simple HMO Hamiltonian Matrix for Naphthalenea

α β 0 0 0 β 0 0 0 β

βb αb β 0 0 0 0 0 0 0
0 β α β 0 0 0 0 0 0
0 0 β α β 0 0 0 0 0
0 0 0 β α β 0 0 0 0
β 0 0 0 β α β 0 0 0
0 0 0 0 0 β α β 0 0
0 0 0 0 0 0 β α β 0
0 0 0 0 0 0 0 β α β

β 0 0 0 0 0 0 0 β α
aThe rows and columns of the matrix are implicitly numbered 1
through 10; the matrix is real and symmetric. bNote that α = 0
(reference) and β = 1 when entered into the spreadsheet.

Figure 1. Structural formula for naphthalene, with carbon atom
numbering corresponding to appropriate matrix elements in Table 1.
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of the Hückel matrix for C60 yields a simple two-dimensional
“connection graph”19 that was used to number the carbons and
easily determine the positions of the nonzero matrix elements.
The final matrix was also verified using the method of

Vittal,20 who created a simple two-dimensional paper model
that can be used for the numbering and requires little more
than a pair of scissors and tape to cut and fold to construct a
three-dimensional C60 molecule. The results from our Excel-
based computation, which took less than 10 s on a stock PC,
are compared (Table 2) to the complete set of simple HMO
theory results reported in the seminal review article by Kroto et
al.,21 both to test the validity of the program and to
demonstrate that it can be used for large molecules. The

agreement is excellent within the round off error limits and
machine precision.
It is possible to compare experimental data21 for C60 against

predictions made by simple HMO theory. The calculations are
also historically significant because most of the theoretical
studies18,19,21 published in the literature in the early and mid-
1980s (when the formation of stable C60 was first
experimentally verified) were HMO-theory-based, principally
because of computer technology limitations. Students can
compute bond orders and determine that there are two distinct
values, corresponding to the five-membered and six-membered
ring substructures in the truncated icosahedron. These values
can be compared to values3 for various types of C−C bonds in
terms of reactivity and aromaticity. The delocalization energy
per carbon (0.5527β) can be calculated and is larger than the
value (0.3333β) for benzene, the reference system for
aromaticity. However, it is well known21 that C60 is not
aromatic and has unique properties. Given that simple HMO
theory assumes planarity, students can be asked to discuss the
apparent anomaly on the basis of structure. It has also been
determined that pure C60 is a perfect insulator

22 because of the
large “band gap” between HOMO and LUMO and is a weak
electrophile,21 presumably because of its low-lying LUMO.
Both of these properties can be predicted on the basis of MO
energies computed using HMO theory.

■ CONCLUSIONS

We have extensively tested our approach using the Excel-based
software and assignments that routinely involve computation of
HMO energies and construction of HMO diagrams for a
number of conjugated hydrocarbons, starting with the reference
carbon−carbon system ethene with a single π bond, working
with open chain conjugated systems through octatetraene, and
then with benzene and PAHs, including naphthalene and
anthracene. All these computational assignments can be easily

Figure 2. Screenshot (Mac OS X) of the HMO real symmetric matrix for C10H8 (naphthalene) set up in the MDIAG Excel workbook, along with
the resultseigenvalues and eigenvectors. Note that the computation was “run” by selecting the DIAGONALIZE custom menu item.

Table 2. Eigenvalues for C60

Computed (this work) Literature (Kroto et al.21)

3.000a 3
2.757[3]b 2.757[3]
2.303[5] 2.303[5]
1.820[3] 1.820[3]
1.562[4] 1.562[4]
1.000[9] 1[9]
0.6180[5] 0.618[5]

−0.1386[3] −0.1386[3]
−0.3820[3] −0.3820[3]
−1.303[5] −1.303[5]
−1.438[3] −1.438[3]
−1.618[5] −1.618[5]
−2.000[4] −2[4]
−2.562[4] −2.562[4]
−2.618[3] −2.618[3]

aThe numbers are in units of β, referenced to α, which is the zero of
energy. bDegeneracy in square brackets.
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carried out in a single 3 h laboratory period. In addition, we
have also assigned computations on C60 for extra credit, and the
response and interest from students has been very good.
Anecdotal feedback that we have received suggests that
students taking the physical chemistry sequence over the past
five years found the HMO calculations particularly interesting
and challenging. Students have also indicated that it was very
relevant in terms of understanding chemical bonding and
structure and developing a better appreciation of the concepts
of conjugation, resonance, and aromaticity in organic chemistry.
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MDIAG, a custom Excel Workbook with VBA matrix
diagonalization macros accessible from the menu bar, along
with sample CSV data files for ethene and butadiene. This
material is available via the Internet at http://pubs.acs.org.
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