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ABSTRACT: In this work we are going to present how an interactive platform can be used as a
powerful tool to allow students to better explore a foundational problem in quantum chemistry:
the application of the variational method to the dihydrogen molecule using simple Gaussian trial
functions. The theoretical approach for the hydrogen atom is quite straightforward, however, the
level of complexity increases considerably for the dihydrogen molecule. Although, as shown in
this work, it is possible to obtain an analytical expression for the dihydrogen molecule variational
integral by “pen-and-paper”, this expression cannot be completely appreciated without the proper
tools. In this work the “dry” analytical equations were implemented into an interactive platform
that allows the students to visualize results (like probability densities and meaningful graphs),
play with parameters, and thus gain a deeper understanding of the problem itself. Having an
interactive environment is also important as a way of minimizing complex equations, testing
analytical results with numerical calculations, among other things, that otherwise would be
unachievable by “pen and paper” only. Additionally, in this work the bonding and antibonding
behaviors of the dihydrogen molecule were investigated and evaluated in detail. As a final
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outcome, this article shows that important properties regarding the dihydrogen molecule (like equilibrium bond length and

favorability of formation) can be explained and approximated with the variational method.
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B INTERACTIVE PLATFORM FOR TEACHING
QUANTUM CHEMISTRY

There is a considerable discrepancy between the apparent “ease
of use” of some quantum chemistry software packages on one
hand, and the often challenging math underlying quantum
mechanics on the other hand. It is thus not surprising that to
many students and researchers, quantum chemistry is like an
impenetrable “black box”, where deeper understanding appears
unattainable. It is undeniable that a fundamental knowledge of
quantum chemistry cannot be achieved without “pen and
paper” derivations. At the same time, it is also important for
students to gain an appreciation for the immense power of
computational approaches not only in solving quantum
chemistry problems but also as a visualization tool. In fact,
computer algorithms can greatly assist student learning not
only by visualizing data output but by aiding understanding of
mathematical relations, and carrying out a large number of
calculations for systematic exploration of parameters. A number
of educational software packages (e.g, Mathematica, Maple,
Matlab) can perform some of these tasks. In this work, we are
going to use the IPython interactive computing environment' as
a platform for teaching quantum chemistry. The IPython
notebook format was chosen because of some attractive features
as: it is open-source and freely available; it runs within a web
browser interface; it allows inclusion of explanatory text, tables,
images, and mathematical equations in LaTex format; and it
© XXXX American Chemical Society and
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includes powerful libraries for symbolic mathematical oper-
ations (SymPy), numerical operations (NumPy, SciPy), data
visualization (Matplotlib, Mayavi), and even quantum chem-
istry operations (QuTiP).>’

B SCOPE OF THIS WORK

The aim of this work is to present an interactive environment
that allows students to better explore the application of the
variational method*™® to the dihydrogen molecule using simple
Gaussian trial functions. The analytical calculations performed
were implemented into an IPython notebook program (which is
available as Supporting Information, as well as installation and
running instructions). The application of the variational
method to the hydrogen atom is a classic textbook example
in quantum chemistry classes. The solution to this problem can
be reached entirely by “pen and paper”, following primarily
calculus rules.

The application of the variational method to the dihydrogen
molecule involves a number of nontrivial derivations and
assumptions. Several papers on the literature discuss different
applications of the variational method,”™"" including to the
dihydrogen molecule.'®” However, to our knowledge, the
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Figure 1. Variational integral, the kinetic term, and the electron-nuclear attraction term as a function of a.

derivation of the dihydrogen molecule variational integral using
Gaussian trial functions has not been published to date. This
article will focus on some key equations and results of this
derivation. More details on the mathematical derivations can be
found in the Supporting Information. The IPython notebook
program allows an interactive visualization of the wave
functions and the energy of the dihydrogen molecule to
compare bonding and antibonding behaviors, among other
things.

It is expected that the IPython notebook program, along with
this article, can be used in quantum chemistry and/or physical
chemistry classes to give the students a more interactive
learning experience on this key problem in quantum mechanics,
which involves not only the variational theorem itself but also
other fundamental concepts in quantum chemistry, such as
Pauli’s principle, the Born—Oppenheimer approximation, and
the combination of atomic orbitals. It is hoped that this
notebook can serve as a hands-on introduction to implement-
ing quantum chemistry computations and that it will encourage
students to develop other educative interactive programs on
other quantum chemistry topics (e.g., Perturbation Theory,
Hartree—Fock method).

This IPython notebook program together with this manuscript
was tested in class as a homework given to the students of the
undergraduate course CHM 4412—Physical Chemistry,
Quantum Mechanics and Spectroscopy, at the University of
Florida. The students were junior/seniors, with no previous
experience in IPython. The students were asked to comment on
their learning experience and they wrote that through this
educational experience they were able to “easily visualize
bonding and anti-bonding wavefunctions”, “better understand
orbitals overlap”, and “found it interesting to see how the
formation of the H, molecule chemical bond can be justified by
using simple Gaussian functions and the variational method”.
This is an example of pedagogical value and practical student
learning enhancement gained from the material presented in
this manuscript.

Bl VARIATIONAL THEOREM

The variational method is an approximation method in
quantum chemistry. It involves a trial function, which is
optimized by minimizing its energy in order to approach as
close as possible the true ground state solution. This happens
because according to the variational theorem:

o )
(@) )

where W is called the variational integral, l¢) is a trial function,
H is the system’s Hamiltonian, and E, is the exact ground state
energy. This inequality becomes an equality when the trial
function equals the exact ground state wave function, ie., l¢p) =
hy). The proof for this inequality is straightforward and can be
found in the Supporting Information.

B APPLYING THE VARIATIONAL METHOD TO THE H
ATOM

We know from the solution of the Schrodinger equation that
the exact wave function has the form e, therefore if we apply
the variational method for a trial wave function in this form we
will get the exact solution. Let us use instead a Gaussian
function as a normalized trial wave function given that the
analytical solutions to Gaussian-based electronic structure
integrals are well-known (see Supporting Information):

$(r) = Npe ™ )

where N, is the normalization factor, a is a decay factor, and r is
electron—nucleus distance.

The Hamiltonian in atomic units (i.e., units chosen in such a
way that A = 1, m, = 1, q. = 1, and 1/4me, = 1) for the
hydrogen atom is:

H = _lvz _ l
2 r (3)
where —1/2V? accounts for the kinetic energy, and —1/r for
the electron—nuclear attraction.
It can be shown that the variational integral (eq 1) for the
hydrogen atom is (see Supporting Information):

Wzia—\/zﬁ
2 7 (4)

where 3/2 a accounts for the kinetic energy, and — \/E Ja
¥4

accounts for the electron—nuclear attraction energy.

We see that W depends on a, which means that W can be
minimized with respect to a. It can be shown that the a value
that gives the minimum value for W and the minimum value of
W are respectively (see Supporting Information):

min
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As the exact energy is E, = —0.5, we see that Wy > E; as
expected, and that Wy and E, differ by 15%.

Let us now see all this graphically by plotting the variational
integral (W), the kinetic contribution ((¢l — 1/2 V?I¢)), and
the electron—nuclear attraction contribution ({¢l — 1/rl¢h}) to
W as a function of a.

As Figure 1 shows, the minimum for W arises due the
competing effects of the electron kinetic energy on one hand,
and the electron—nuclear attraction on the other. As «
increases, the wave function decays faster, meaning that the
electron density closer to the nucleus increases. We see that as
the electron gets closer to the nucleus on average (i.e., when a
increases) its kinetic energy increases (i.e., the electron speeds
up) and the electron—nuclear attraction becomes stronger as
one would expect.

B APPLYING THE VARIATIONAL METHOD TO THE H,
MOLECULE
Setting the Problem

The electronic Hamiltonian in atomic units for the H, molecule
is:

1 1 1 1 1
H=-—V - ~V; = — =~ ——— ~
2 2 7 —RJ) 15 —Ryl 1% —R,
1 1
- - = + - -
I7, — Ryl 11 — 7l (7)

where the first two terms account for the kinetic energy of each
electron, the other terms with negative signs account for
electrons—nuclei attractions, the last term accounts for
electron—electron repulsion. Vi acts on the coordinates of
electron 1 (7,) and V3 acts on the coordinates of electron 2
7). T{A and l_iB denote, respectively, the coordinates of the
nuclei A and B. A schematic representation is shown in Figure
2.

Figure 2. Schematic representation of the coordinate space and of the
atomic orbitals for the dihydrogen molecule.

Let us use as the trial wave function a Gaussian orbital
around each nucleus:

b, (7) = Nye i 8)
(%) = Npe @21 9)

As both orbitals describe one electron around an H atom of
the H, molecule it is natural to assume that these two orbitals
are equivalent and so:

O =03 =0 (10)

It can be shown that in order for ¢, and ¢y to be normalized
we have:

3/4
2
N,=N;=N-= (_a)
T

(11)

regardless of the values of R, and Rs.

In order for the total wave function to obey Pauli’s principle,
it has to be antisymmetric with respect to the exchange of
electrons. The total wave function is a product of a spatial wave
function and a spin wave function. In case the spin multiplicity
is 1, that is, when we have one electron with spin up and the
other with spin down, the spin wave function is antisymmetric
and therefore the spatial wave function has to be symmetric. In
case the spin multiplicity is 3, that is, when we have both
electrons with spin up or both with spin down, the spin wave
function is symmetric and therefore the spatial wave function
must be antisymmetric. Our trial function ®(7,,7,) is a spatial
wave function, so let us write it as a product in the following
way:

1

BDE = hDOE)

where the plus sign applies for multiplicity 1 (bonding) and the
minus sign for multiplicity 3 (antibonding).

It is important to emphasize that although ¢,(7) and ¢5(7)
are normalized functions, ®(7,,7,) is not normalized because
@4(7) and @y(7) are not orthogonal to each other.

It can be shown that the expression for W becomes (the
most enthusiastic and curious readers are encouraged to go
through the long but beautiful derivation steps of this
expression, which can be found in more details at the
Supporting Information):

_ (DIHID)
T (DID)

s R

= {3a +(3- aRz)ae_"Rz -4
X1+ L /= erf(R\2a) |+ e_aRZerf(RF)
2R\ 2a 2
T ENE Yy DO |
7| RYVa 4 1+ e—aR

(13)

= | o

where the error function is erf (x) =2/ \/ z [ e dv, the upper
sign accounts for spin multiplicity 1 (bonding) and the lower
sign accounts for spin multiplicity 3 (antibonding). It is
interesting to note that in the limit where R — oo the
expression of W goes to two times the expression we had for
the hydrogen atom (see eq 4), as one would expect. This is true
regardless of the spin multiplicity.

The choice for the positions of the nuclei is arbitrary. Here,
we are going to place the nuclei symmetrically along the z axis
by making Ry = —R, = (R/2)2.

We can also derive an expression for the probability density
P(x, y, z) of finding an electron in an infinitesimal volume
element d7 around a point 7 = x& + y) + zZ:
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Figure 3. Variational integral of the dihydrogen molecule as a function of a for R = 3 Bohrs (1 Bohr =0.5292 X 107'm). This figure was generated
by the IPython notebook program. The reader may go to the program to generate this figure for other values of R.

[1o(7, %)Pdr,
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3/2 —2a(x*+y*
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—aR?
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Using an Interactive Platform To Test and Visualize Results

The integrals necessary to solve in order to get the final
expression for the variational integral (eq 13) were
implemented numerically using IPython notebook and the
results were compared with the ones we got analytically. This
was a really important step in order to detect possible errors in
the calculations, which in such large and complex analytical
calculations are not unlikely to happen.

As eq 13 shows, the variational integral W is a function of ¢,
R, and the spin-multiplicity. Finding the optimum value of «
that gives the minimum value of W (for a given spin-
multiplicity and value of R) would be a really tough task by
“pen and paper” because the expression for W involves error
functions, which makes it unfeasible to obtain an analytical
expression for @, as a function of R and the spin-multiplicity.
This problem, however, can be easily solved numerically within
the interactive platform. An example is shown in Figure 3.

In Figure 3 ay and Wy are the optimum values for the
hydrogen atom obtained using the variation method (see eqs $
and 6). For R = 3 Bohrs we see that a,,, is lower than a;; for
both spin-multiplicities. In a similar way, the a,,, value for
different values of R can be determined for the bonding and
antibonding wave functions. By plugging a,;, into eq 14 one
can visualize how the optimum trial wave functions look like. In
Figure 4, the probability densities of the optimized trial wave
functions are shown plotted as heat maps as a function of x and
z (with y = 0) for different values of R and for both the bonding
and antibonding wave functions. For comparison, the
probability density of the hydrogen atoms as if they were
isolated is also shown. The probability density P,y(x, y, z) for
two isolated hydrogen atoms is straightforward to obtain:

AGIEAAGL
B 2

3/2
— l( 2'aH) e—ZaH(x2+y2)[e—ZaH(Z+R/2)2

Py(x, y, 2)

2\ &

+ e—ZaH(Z—R/Z)Z] (15)

Naturally, the expression for P(x, y, z) presented on eq 14
converges to P,y(x, y, z) for sufficiently large values of R and
for a = ay.

For not too large values of R we can clearly see a bonding
behavior for spin-multiplicity 1 exemplified by the presence of
probability density between the nuclei, as opposed to an
antibonding behavior for spin-multiplicity 3 that can be seen by
the presence of a node in the probability density between the
nuclei. It is intriguing to note that the bonding probability
density “looks like” two isolated hydrogen atoms for small
values of R (R ~ 1.4S Bohrs), however for intermediate values
of R (R ~ 4 Bohrs) it is the antibonding probability density that
“looks like” two isolated hydrogen atoms. It is also interesting
to note that the probability density for the optimum trial wave
function for small or intermediate values of R is never equal to
the sum of the probability densities of the two isolated
hydrogen atoms (as can be clearly seen for R = 1.45 Bohrs and
R = 2.5 Bohrs). On the other hand, we also see that as R gets
larger both the bonding and the antibonding wave functions
tend to behave as two isolated hydrogen atoms and o, = ay.

Another simple way to visualize the probability density of the
optimum trial wave functions is by plotting it as a function of z
only (by setting x = y = 0 in eq 14, for instance). This is shown
in Figure 5, and as in this plot the probability density was not
integrated over x and y, one cannot expect the graphs to be
normalized. In addition to the bonding and antibonding
probability densities, we also plot the probability density for the
hydrogen atoms as if they were isolated (eq 15).

For R = 3.0 Bohrs ™! =! = 0.1766 < a;; which means that, in
comparison to the isolated hydrogen atoms, in the bonding
situation the electrons get farther away from the nuclei. As a
result, the probability density in between the nuclei becomes
more equally distributed for the bonding trial wave function.
For R = 1.45 Bohrs ™! =! = 0.3332 > a; which means that in
the bonding situation the electrons get closer to the nuclei in
comparison to the isolated hydrogen atom. We see that at this
distance the maximum of the probability density lies at the
middle position between the nuclei. For R = 6 Bohrs both the
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Figure 4. Probability density of the bonding (spin-multiplicity 1, at the center) and antibonding (spin-multiplicity 3, at the right) optimum trial wave
functions (plotted as heat maps in the y = 0 plane) for the dihydrogen molecule for some values of R. The probability density of the two isolated
hydrogen atoms is also presented (at the left). These density plots were generated by the IPython notebook program. The reader may go to the

program to generate these plots for other values of R.

bonding and antibonding wave functions behave almost like

isolated hydrogen atoms (as the reader can verify on the

IPython notebook program, for R ~ 8 Bohrs and larger, the

probability density plots for the bonding, antibonding, and

isolated atoms are identical).

Besides the plots of the wave functions we can also use the
computational environment to produce some insightful graphs
as the ones shown in Figure 6, which depicts some of the trends
in the optimum a,,;, and different types of contribution to the
W (see eq 25 of the Supporting Information) as a function of R.
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Figure S. Trial wave function as a function of z for x = y = 0 and for
some values of R. These density plots were generated by the IPython
notebook program. The reader may go to the program to generate
these plots for other values of R.

Figure 6a shows that il =1 g higher than ay; for R < ~ 1.73
Bohrs and lower than ay; for R > ~ 1.73 Bohrs; o™ =3 is lower
than ay; except for R < ~ 0.64 Bohrs, where it is slightly higher.
For both the bonding and antibonding wave functions o,
converge to ay at large values of R.

Figure 6b and ¢ shows for both the bonding and antibonding
trial wave functions the minimum value of W, as well as the
kinetic, electron—nuclear attraction, and electron—electron
repulsion contributions to W, all as a function of R. These
figures show that the kinetic contribution is higher in energy
than the electron—electron repulsion contribution and that
both are positive. The figure also shows that the electron—
nuclear attraction contribution is negative and higher in
magnitude than the sum of the other two because W, is
negative.

At a first sight, it may be counterintuitive that W, is lower
in energy than 2Wy for the antibonding case or that the graph
of W, as a function of R does not have a minimum for the
bonding situation. It is very important to note then that the
Hamiltonian we are dealing with in eq 7 does not include the
nuclear repulsion interaction. As the wave function we are
considering depends only parametrically on the nuclei
coordinates (see eq 12), this means that if we added nuclear
repulsion (1/R) to the Hamiltonian it would only add a
constant (because it would not depend on @) equal to 1/R to
our expression for the variational integral at eq 13. Within the
Born—Oppenheimer approximation, the nuclei and electronic
motions can be separated, and that is exactly the approximation
we are making when we do not include an explicit nuclear
dependence on the wave function expression. Therefore, both
the Hamiltonian in eq 7 and the wave function in eq 12 can be
considered as electronic quantities within the Born—Oppen-
heimer approximation.

Figure 6d presents the minimized values of the variational
integral plus the nuclear repulsion term. A comparison of the
plots for both the bonding and antibonding cases with two
times the energy of an isolated hydrogen atom (W}, minimum
value of the energy for the hydrogen atom also obtained using
the variational method, see eq 6) is extremely insightful in
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Figure 6. (a) Optimum Gaussian decay factor (a,,,) as a function of R for both spin-multiplicities; (b) and (c) Optimum values of the variational
integral (W,,;,) as a function of R for both spin-multiplicities as well as the kinetic, electron—nuclear attraction, and electron—electron repulsion

contributions to W,

min- (d) Optimum values of the variational integral plus nuclear repulsion (W,

+ 1/R) as a function of R for both spin-

multiplicities. These figures were generated by the IPython notebook program.
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terms of understanding the bond formation. If we consider the
process H + H — H,, the energy difference between W, ;, + 1/
R and 2Wy; is going to tell us whether this process is favorable
or unfavorable. As Figure 6d shows, for the antibonding wave
function W, + 1/R is always higher in energy than 2Wy,
which means that the process is unfavorable and a bond will not
be formed (that is, that hydrogen prefers to be as two isolated
hydrogen atoms rather than as a dihydrogen molecule for any
value R). For the bonding wave function, however, Figure 6d
shows that this process is favorable (and thus a bond will be
formed) for approximately 1.00 > R > 2.32 Bohrs (the process
is unfavorable for all other values of R).

It is interesting to note that, regardless of the spin state, at
larger values of R the curves for W, + 1/R converges to 2Wy,.
Although the Hamiltonian (see eq 7) does not have any spin
dependence, the spin (inserted in the spatial wave function
through Pauli’s principle, see eq 12) is an important property.
The hydrogen atoms can come together in two different ways:
when both have the same spin state (antibonding, spin-
multiplicity 3), or when both have different spin states
(bonding, spin-multiplicity 1). We see that in both cases
when the atoms are far apart the behavior is equivalent, but
when they get close together the behavior is different for the
two situations. This observation is in agreement with what is
taught on Molecular Orbital Theory in General Chemistry, as
illustrated in Figure 7.

Multiplicity 1 Multiplicity 3
H, Molecular H, Molecular
Orbitals Orbitals
HAtomic _  H Atomic HAtomic _1__ H Atomic

Orbital *_ Orbital

Figure 7. Atomic and molecular energy diagrams for the dihydrogen
molecule.

Orbital " Orbital

+ . F

Energy
Energy

As our results show and Figure 7 illustrates, when the atoms
come together with each atom having a different spin state
(spin-multiplicity 1), depending on the internuclear distance R,
a bond is formed because the molecule is more stable in energy
than the isolated atoms. However, when the atoms come
together with each atom having the same spin state (spin-
multiplicity 3) the interaction has a repulsive (antibonding)
behavior and a bond cannot be formed.

As Figure 6d shows, the curve for W, + 1/R has a
minimum for the bonding optimum trial wave function. This
minimum represents the equilibrium position of the nuclei, and
as can be seen from the figure (see the inset of Figure 6d) it is
equal to R, = 1.45 Bohrs; probability density plots of the
optimum trial wave function at this equilibrium position is
shown in Figures 4 and 5. In comparison, the experimental
value for the bond length of the dihydrogen molecule is 1.40
Bohrs,"'® which is in fairly good agreement with the value we
obtained by using the variational method with Gaussian trial
functions. Similarly, the bond energy is determined from the
difference of W,,;, + 1/R at R,; and 2Wy, which is equal to
—44.946 kcal/mol. This value underestimates in magnitude the
experimentally determined bond energy for the dihydrogen
molecule which is —109.5 kcal/mol.*'®

B CONCLUSIONS

This work shows that important features of the dihydrogen
molecule can be explained with the variational method and
simple Gaussians as trial wave functions. Among other things,
we are able: to show that the favorability of formation of the
dihydrogen molecule from two hydrogen atoms can be seen in
the results; talk about the bonding and antibonding behaviors
of the dihydrogen molecule (that is, when the multiplicity is 1
and when it is 3); obtain an equilibrium bond length for the
dihydrogen molecule which is in close agreement with the
experimental one.

Although the variational integral for the dihydrogen molecule
presented in this article was obtained analytically, the IPython
notebook platform had a fundamental role in testing the
derivations, on visualizing results (for example, the wave
functions), and on deriving some important results that would
be unreachable by only “pen and paper” (like the equilibrium
bond length). Therefore, this work is an example that the
combination of a computational environment and “pen and
paper” can be powerful in complex analytical derivations as well
as it can be a nice way to teach quantum chemistry/physical
chemistry to students in class.
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