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ABSTRACT: This manuscript presents an exercise that utilizes
mathematical software to explore Fourier transforms in the context
of model quantum mechanical systems, thus providing a deeper
mathematical understanding of relevant information often intro-
duced and treated as a “black-box” in analytical chemistry courses.
The exercise is given to undergraduate students in their third year
during physical chemistry, thus providing a theoretical foundation
for the subsequent introduction of such material in analytical
instrumentation courses. With the reinforcement of familiar
concepts such as the Heisenberg Uncertainty Principle, classical correspondence, and linear combinations in the context of
both position and momentum space for a particle in a box, a better understanding of the mathematical implications of the Fourier
transform is fostered. Subsequent analysis of a time-dependent function constructed via a linear combination and its
transformation to the frequency domain provides a practical example relating to the Fourier processes applied in analytical
spectroscopy. The final portion of the exercise returns to the position/momentum conjugate pair and explores how the
construction of a narrow wavepacket via a sum of cosines illustrates the Uncertainty Principle once the probability density
functions of each coordinate are analyzed. This exercise has been shown to not only reinforce fundamental concepts necessary for
a true appreciation of quantum mechanics, but also help demystify the Fourier transform process for students taking analytical
chemistry.
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Fourier Transform Techniques

■ INTRODUCTION

One of the main functions of physical chemistry in the overall
progression of the undergraduate student is to provide a
mathematical basis for ideas and subjects that are found in
other chemistry subdisciplines. The underlying physics is
introduced, and details that can only be expressed in the
context of a math-based course are more fully explored.
Concepts from thermodynamics, kinetics, and quantum
mechanics can be introduced in general chemistry, but physical
chemistry is where these topics can be expounded in rigorous
detail. Upper-division classes such as inorganic, analytical, and
advanced organic chemistry rely on physical chemistry to build
a deeper understanding of spectroscopy, group theory, and
bonding theories in hopes of producing students with a more
well-rounded view of the theoretical foundations of the field as
a whole. The activity presented in this article fits the established
paradigm, and with the help of computational software
packages, provides a mathematical understanding of the Fourier
transform (FT) to students in physical chemistry, establishing a
foundation for better comprehension of the practical
applications which are introduced in analytical and instrumen-
tation courses.1−3 The FT plays a key role to chemists of all
disciplines,4 and has prompted several educational exercises

designed to elucidate understanding for students.5−12 Our goal
in this particular exercise is to combine previously reported
work with a novel investigation of the Heisenberg Uncertainty
principle involving a linear combination of cosine functions.
This activity provides an integrated approach toward teaching
the subject by coordinating and emphasizing a direct link
between disciplines, becoming a useful tool to educators in this
area.
The FT, on its most fundamental level, is a mathematical

technique that relates information between two conjugate
domains. A general form of the FT relating frequency, ω, and
time, t, is13,14
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where h(t) is a general function dependent on time, i = (−1)1/2,
and H(ω) is the resulting function in the frequency domain.
Spectroscopic instrumentation often utilizes this technique,
extracting frequency information from time dependent data.
Useful examples covered in instrumentation courses include
multiplex techniques applied to infrared spectroscopy, nuclear
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magnetic resonance spectroscopy and mass spectrometry.1 As a
further example, in inorganic chemistry the FT is used to
extract structural information from X-ray diffraction data.15

Just as time and frequency can be related via the FT, position
and momentum can also be related. For example, a position
dependent wave function can be transformed into one that is
dependent on momentum.16,17 Physical chemistry students,
who have a basic knowledge of concepts such as wave
functions, linear combinations, the Born interpretation, classical
correspondence, and the Uncertainty Principle, have all the
necessary tools that allow for a true mathematical and
conceptual understanding of the FT and the physical
information one can glean from its application. Exploring
(and thus reinforcing) the aforementioned concepts in the
realm of position and momentum dependent wave fuctions
provides the perfect proving ground to establish a deep
understanding of the impacts of the FT, and in turn, allows for
the FT to no longer be treated as a “black-box” in other
advanced courses.
We have chosen to use Mathcad as the mathematical

software package for evaluation of the FT (when applicable)
and for the graphical representation of resulting data because it
is the platform used in the balance of the physical chemistry
curriculum at our university. However, the exercise is presented
in a general format, allowing for its easy translation to other
commonly used mathematical programs such as Mathematica,
MATLAB, Maple and even Excel.
Provided in the Supporting Information is a general

laboratory procedure that can be employed by instructors
who wish to use this approach; also supplied is an example
Mathcad document that explicitly shows all of the important
mathematical exercises described in the text below and their
accompanying graphs.

■ EXERCISE DETAILS
The exercise begins with students producing familiar plots of
the position probability density functions associated with
standard one-dimensional particle-in-a-box solutions. The
wave functions themselves have the form18,19
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where L is the length of the box and n is the quantum number
ranging from 1 through∞. It should be noted that, on the basis
of the definition of the potential energy associated with this
system, the given wave functions are valid inside the box,
defined as the region 0 ≤ x ≤ L, while outside the box in the
regions −∞ ≤ x < 0 and L < x ≤ ∞, the wave function is zero.
By increasing n incrementally, the traditional indication of
classical correspondence is shown by a more even distribution
of probability, |ψ(x)|2 across all regions of the box, as
demonstrated in Figure 1.
Next, students are asked to plot the analytical expression

associated with the momentum probability density of this
system.16,17 Through analytical integration, or the use of a
symbolic integrator, the FT of the position wave function yields
a momentum (p) wave function of the form
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The reader should note that the Fourier transform integral
shown in eq 3 has been performed with ℏ set to unity to retain
generality but avoid complications associated with units. Plots
of the momentum probability function, |ψ(p)|2, for this system
are less common, but classical correspondence is shown in the

Figure 1. Particle in a box probability distributions in position space for L = 1 and (a) n = 1, (b) n = 6, and (c) n = 12.

Figure 2. Particle in a box probability distributions in momentum space for (a) n = 1, (b) n = 6, and (c) n = 12.
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same manner as before; as the quantum number is increased,
the probability distribution of momentum approaches the
expected, intuitive result of two possible values of momentum
for a fixed energy, equal in magnitude but opposite in sign.
Figure 2 indicates this trend, showing the formation of two
distinct peaks that shift to higher values of momenta with the
increase in n.
This result establishes the general use of the FT, as students

can readily see position information transformed into
momentum information, while also noting that the expected
results associated with correspondence are shown in
momentum space as well as position space. It should be
noted, however, that quantum effects are still prevalent in each
of the plots shown in Figure 2. The peaks themselves are not
delta functions, implying some distribution of momenta exists
around each classical result. Moreover, one can see the
existence of peaks positioned between the classical results,
indicating the probability (albeit smaller) of nonclassical
momentum states which contribute to the overall momentum
distribution.
The next step in the exercise asks students to produce, on

their own, an explanation of how the Heisenberg Uncertainty
Principle can be indicated by use of the given functions.20,21

After being prompted to increase the length of the box for a
fixed n, students get a stark visual picture of the position
probability stretching over a larger region of the x-axis, and how
a simultaneous narrowing of the momentum probability
accompanies such a change, as demonstrated in Figure 3.
Again, this result speaks to the utility of this exercise as a tool

not only to introduce ideas related to the FT, but to also
pictorially reinforce concepts that are intrinsic to every
undergraduate physical chemistry course dealing with quantum
mechanics.

From here, the exercise switches to a standard method of
introducing a Fourier analysis in the context of the relationship
between the time and frequency domains as might be utilized in
analytical spectroscopy. Through the use of a linear
combination, a square wave (represented below as h(t)) can
be synthesized from a set of time dependent sine functions
(each possessing a different frequency) via the equation2,22
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where j is the index for each term in the series, jmax is the
number of terms in the sum, t is time and T is the period. Note
again that as the index j changes, the sine term associated with
said index has a higher frequency than all preceding terms
before it. Convergence in the context of linear combinations is
then tested by adding more and more terms to the sum within
eq 4. Typical results of such a convergence test are given in
Figure 4.

The FT of eq 4 takes the time dependent information found
in the terms of the sum and converts these data to the
frequency domain via eq 1 where H(ω) is now the resulting
spectrum in terms of frequency. To perform the prescribed
analysis, a different method of integration is utilized in the
document: the intrinsic Fast Fourier Transform (FFT)
subroutine,5 which is a convenient tool to numerically perform
the required mathematics. Students investigate the necessary
input for the FFT via the numerical software package’s help file
and then produce a discretized function (necessary for the
application of the FFT subroutine) along with the resulting
frequency spectrum, as is shown in Figure 5.
Because this process requires discretization of the function,

and thus introduces the need for a sampling frequency, it also
allows for the exploration of the Nyquist theorem, which
defines the required digital sampling frequency to fully preserve
all high frequency information in a spectrum of interest.1,5 As

Figure 3. A comparison of the position space and momentum space
probability distributions of quantum state n = 5 for boxes of different
length: (a) position distribution with L = 5; (b) position distribution
with L = 50; (c) momentum distribution with L = 5; (d) momentum
distribution with L = 50. Note that (c) results from a FT of the wave
function in (a), and (d) results from the FT of the wave function in
(b).

Figure 4. Summing of sine waves to synthesize a square wave. Each
wave is constructed with (a) one term, (b) 3 terms, and (c) 5 terms.

Figure 5. Input and output functions resulting from the application of
the FFT: (a) input discretized square wave consisting of 5 sine terms
of varying frequencies, and (b) output spectrum with peaks at each of
the five frequencies used in the square wave synthesis.

Journal of Chemical Education Article

DOI: 10.1021/acs.jchemed.5b00493
J. Chem. Educ. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.jchemed.5b00493


an additional exercise, students are prompted to change the

sampling frequency and produce plots that show loss of high
frequency information if the Nyquist theorem is not properly
applied to this system (i.e., lower frequency of discretization

results in a loss of spectral information, as shown by
disappearance of high frequency peaks in the frequency domain
spectrum). Not only does this approach give a practical, albeit

simple, explanation of how FT instrumentation interprets time
dependent data, but from the standpoint of integration
techniques, it introduces discussion of analytical versus

numerical solutions, which is again a common point of
emphasis in physical chemistry courses.
Finally, ideas relating to the Heisenberg Uncertainty

Principle and linear combinations are investigated in the
culminating portion of the exercise. Through the use of a

wavepacket construction in the position domain and the
subsequent FT of this wavepacket into momentum space, visual
verification of the Uncertainty Principle is established. A box is

once again defined as the region 0 ≤ x ≤ L. A linear
combination of cosine functions is centered at the midpoint of
the box using
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where N is an adjustable parameter representing the total

number of terms in the linear combination. Again, integration
(over the limits of the box) can be carried out via a symbolic
integrator, or one can work out the analytical solution by hand.

The result of such integration is
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Figure 6 shows typical student output, as taking the limit of
increasing N and plotting the position and momentum
probabilities readily shows the impact that the Heisenberg
Uncertainty Principle has on these Fourier related variables.
As N increases, the interference occurring in the linear

combination of cosine terms yields an increasingly more
localized wavepacket, narrowing the position probability and
thus increasing the certainty associated with this region of
space. Simultaneously, the momentum probability function
widens, encompassing more and more possible momenta and
thus increasing uncertainty. Like the FT analysis associated with
the linear combination of time dependent sine terms, the
thoughtful student will notice that each cosine term in eq 5 can
be viewed as possessing a different momentum. Thus, the
addition of an increasing number of higher momentum terms
to the linear combination yields a function distributed over a
wider range in momentum space.

■ DISCUSSION

This exercise was enacted in the first of a two-part physical
chemistry course sequence that covers quantum mechanics and
chemical kinetics. The software-dependent portion was done
during a 3 h lab session, with questions and problems done

Figure 6. Demonstration of the Heisenberg Uncertainty Principle through the use of the FT of a linear combination of cosine functions built up in
the center of a box with length L = 1. Plots a−c are in position space with (a) 1, (b) 25, and (c) 50 terms used in the sum constructing the
wavepacket. Plots d−f are in momentum space with (d) 1, (e) 25, and (f) 50 terms in the linear combination.
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post-lab. It was given during the beginning third of the course,
after the general tenets of quantum mechanics had been
established, and the particle in a box introduced. Students who
performed this exercise were either enrolled in analytical
chemistry concurrently with physical chemistry, or would take
analytical chemistry in a year’s time. Students were thus
exposed to the mathematical aspects that are the focus of the
FT before they were introduced to the practical applications
emphasized in their analytical chemistry course. The topic was
initiated from a mathematical standpoint, and then to maximize
reinforcement, covered shortly thereafter in the analytical
instrumentation course. The greatest benefit was achieved by
the students taking the courses concurrently, as the short
turnaround resulted in these students reporting a deeper
understanding of the material and a better appreciation for the
FT process as utilized in analytical chemistry.
The instructor of the analytical chemistry course introduced

the FT using the time to frequency portion of the document
itself as an interactive tool. The square wave synthesis was
reintroduced, the transform was briefly explained as a
mathematical tool, and finally, it was demonstrated how loss
of high frequency information can result from improper
application of the Nyquist theorem. Utilization of the
document in this manner provided students with a familiarity
that helped solidify the concept of the transform as a whole, not
seeing it only as a mathematical tool but having an appreciation
for the details behind its real-world application to analytical
spectroscopy. As an interesting aside, it can be noted that the
relationship in multiplex spectroscopy between total mirror
displacement and resolution matches the trend observed when
the length of the box is increased leading to a narrower
distribution of momentum (see Figure 3).1

Feedback provided from the physical chemistry students
focused on the visual nature of the document. Being able to
graphically visualize the effects that the prescribed parameter
changes had on the plots of position and momentum
probability functions helped solidify concepts such as
correspondence, linear combinations, and the Uncertainty
Principle. Moreover, students who successfully completed the
analytical integration of the position wave functions into
momentum space reported that, while such calculations were
lengthy and challenging, they provided a useful setting to
practice mathematical and integration techniques that are
necessary for other quantum mechanical calculations. Specifi-
cally, the Euler identity, Born Interpretation, and proper
application of boundary conditions were all crucial concepts
necessary for the completion and analysis of the exercise.
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The supplement contains the described exercise in the form of
two separate Mathcad documents. Sample problems, exercises
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as a separate file. The Supporting Information is available on
the ACS Publications website at DOI: 10.1021/acs.jche-
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