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Saõ Paulo, Brazil
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ABSTRACT: Advances in, and dissemination of, computer technolo-
gies in the field of drug research now enable the use of molecular
modeling tools to teach important concepts of drug design to chemistry
and pharmacy students. A series of computer laboratories is described to
introduce undergraduate students to commonly adopted in silico drug
design methods, such as molecular geometry optimization, pharmaco-
phore modeling, protein−ligand docking simulations, homology
modeling, virtual screening, and pharmacokinetics/toxicity predictions.
Freely available software and web servers are selected to compose this
pedagogical resource, such that it can be easily implemented in any
institution equipped with an Internet connection and Windows OS
computers. This material is an illustration of a drug discovery pipeline,
starting from the structure of known drugs to obtain novel bioactive
compounds, and, therefore, is a valid pedagogical instrument for educating future professionals in the field of drug development.

KEYWORDS: Graduate Education/Research, Laboratory Instruction, Computer-Based Learning, Drugs/Pharmaceuticals,
Molecular Modeling

■ INTRODUCTION

The use of computer technology in the field of drug research
has increased over the past decades. The availability of faster
and cheaper computers in association with the development of
more accurate software makes it possible to hold information
about the known properties of molecules, to perform drug
docking calculations, and to aid in the recognition of protein
binding sites and their interactions via 3D visualization
systems.1 At the same time, the use of these computer-based
tools for teaching chemistry, and particularly drug design, has
been much less explored2a peculiar fact considering that the
education of undergraduates and professionals is a crucial factor
in the success of drug discovery projects.3

It has been observed that “the core knowledge required of
organic and medicinal chemists for careers in drug synthesis is
surely knowing how to synthesize quickly and efficiently a wide
range of candidate structures and at the same time knowing
what molecules are more likely to have the desired biological
properties,”4 the latter being a field of computer-aided drug
design. Therefore, by introducing modern concepts of in silico

drug design to chemistry and pharmacy students, academic
institutions can provide an opportunity for their students to
gain some experience with techniques that have been used to
design drugs that reached the market, such as the antiglaucoma
agent dorzolamide, the antiviral saquinavir, or the antihyper-
tensive aliskiren.5

In this context, a series of 4 h computer laboratories was
envisioned to provide pharmacy and chemistry students a
practical experience with some important issues regarding the
drug design process, such as the study of target−ligand
interactions, geometry optimization, molecular docking,
pharmacophore, and homology modeling. All the software
and online tools used here are free of charge to academic
groups, a fact that allows for easy implementation in any
institution equipped with Internet connection and Windows
OS computers. These protocols were introduced to pharmacy
students of Universidade Federal do Rio Grande do Sul, Brazil,
in a first-semester medicinal chemistry course to illustrate the

Article

pubs.acs.org/jchemeduc

© XXXX American Chemical Society and
Division of Chemical Education, Inc. A DOI: 10.1021/ed500195d

J. Chem. Educ. XXXX, XXX, XXX−XXX

pubs.acs.org/jchemeduc
http://dx.doi.org/10.1021/ed500195d
http://pubs.acs.org/action/showImage?doi=10.1021/ed500195d&iName=master.img-000.jpg&w=202&h=128


process of drug design and to foster discussion of issues
concerning structure−activity relationships for nonsteroidal
anti-inflammatory drugs (NSAIDs).
NSAIDs are among the most widely prescribed medications

in the world. Although many patients may benefit from their
anti-inflammatory and analgesic effects, these drugs may
increase the risk of gastrointestinal and cardiovascular
complications compared with non-NSAID users.6 NSAIDs act
via inhibition of prostaglandin endoperoxide H synthase
(PGHS), a bifunctional hemoprotein endowed with both
cyclooxygenase and peroxidase activities. Because the cyclo-
oxygenase (and not the endoperoxide) activity of PGHS is
inhibited by NSAIDs to achieve the clinical effect, this enzyme
is often simply referred to as cyclooxygenase (COX).7

Considering the recommendation that teachers must emphasize
not only the core science that underpins their discipline but
also the relevance of that science to the contemporary practice
of the profession,8 the use of COX, a clinically relevant drug
target, is proper to illustrate a drug discovery pipeline.

■ BACKGROUND

Course Description

With almost 7 million students in 2012, Brazil has the largest
higher education system in Latin America.9 In addition to
private universities, there are also federal, state, and municipal
universities in Brazil, which are autonomous public institutions
that offer education of excellence, free of charge. State plus
federal institutions account for fundamentally almost all the
research output and the PhD programs in the country.10 The
Universidade Federal do Rio Grande do Sul (UFRGS) is a
Brazilian Federal University founded in 1895 and is ranked
among the top 10 universities in Latin America according to the
ARWU, Webometrics, EduRoute, SCImago, URAP, CWTS
Leiden, Research Gate, and QS World University Rankings.11

Students come to the Medicinal Chemistry course at UFRGS
having had formal coursework in pharmacology, pharmacoki-
netics, immunology, pathology, physiology, anatomy, biochem-
istry, physics, organic, inorganic, and analytical chemistry. The
first semester of the Medicinal Chemistry course (6 credit
hours) focuses on the fundamental aspects and current
methodologies involved in the drug discovery process (in silico
methods, prodrugs, bioisosteres, and the primary exploration of
structure−activity relationships), and in the study of drugs that
act in the cardiovascular, respiratory, and central nervous
systems. Concurrent with the lectures, laboratory experiments
are performed to study the physicochemical properties of drugs,
the strategies for the synthesis of classical drugs and prodrugs,
and in silico approaches for drug design.
The computer laboratories of the Medicinal Chemistry

course at UFRGS were updated in the second semester of
2012, and, since then, about 28−38 students/semester (total =
157) have been exposed to the protocols reported here.
Students are typically divided into four groups (10 individuals
max per group) where they work individually for 4 h/class
under the supervision of the same professor who previously
introduced the underlying concepts of the methods in lectures.
Although we did not perform a formal quantitative analysis,
most students were receptive to these initiatives and expressed
a view that these computer laboratories helped them to
improve their understanding of a drug discovery pipeline.

Evidence of Student Learning through Computer
Simulations

Several papers suggest that manipulating physical or computer
models in laboratory and lecture courses may enhance student
understanding of chemistry concepts.12 Carvalho et al.13 and
Oliveira et al.14 described the use of molecular modeling tools
to increase students’ perception of molecular recognition and
ligand binding interactions. Tsai15 used Web sites and freeware
programs to introduce the principles of pharmaceutical
chemistry in drug discovery and to solve pharmaceutical
chemistry problems. Manallack et al.16 and Sutch et al.17

reported case studies in which students designed potential
drugs through the use of software, and Simpson et al.18 used
geometry optimizations and optical rotation calculations to
illustrate to students the role of the solvent in stabilizing the
zwitterionic form of an amino acid. Recently, Price et al.19

reported a Python script to assist undergraduates in file
conversion, minimization, and docking experiments, and
Hayes20 reported a considerably positive response from
students after the implementation of a 3D model visualization
and basic molecular modeling laboratory suitable to an
introductory medicinal chemistry course.
Simulations are more effective when the educational goal is

to transfer and apply knowledge to real-world problems rather
than simply to memorize facts or procedures. Additionally, low
fidelity simulations may help students to learn the basics more
quickly than high fidelity simulations because the more closely a
simulation models a complex dynamic system, the more
difficult the simulation is for someone to learn and understand
how to use.21 Therefore, these protocols are not used to teach
students how to perform high accuracy molecular docking
simulations using ArgusLab.22 Rather, the intent is to use
ArgusLab as a simple, free and user-friendly molecular docking
tool that allows observation on a computer screen of how
docking algorithms work. Furthermore, many students have a
great deal of difficulty understanding and learning abstract
concepts, such as pharmacophore. Computers allow demon-
stration of complex abstract ideas and provide multiple
examples in seconds, enhancing student learning by self-
resolution of alternative conceptions: informal ideas that have
the general characteristics of being poorly articulated, internally
inconsistent, and highly dependent on context.23,24

■ COMPUTER LABORATORIES OVERVIEW AND
DISCUSSION

Lab 1. Conversion of 2D Structures to 3D, Geometry
Optimization, and Construction of a Pharmacophore
Model

Chemistry is a 3D subject, as illustrated by topics such as
stereochemistry, chirality, conformation, metal coordination
geometry, and molecular symmetry.25 However, 2D structural
representations are usually preferred to teach and study
chemistry because they are easier to interpret, allow the
complete visualization of a molecule at once, and provide a
simple way to recognize chemical patterns. Furthermore, only a
few 3D structures of small molecules determined by X-ray
crystallography are freely available. For example, the Cambridge
Structural Database contains the crystal structures for over
600,000 organic and organometallic compounds:26 a tiny
fraction of the more than 88 million organic and inorganic
substances registered by Chemical Abstracts Service.27 There-
fore, the accurate conversion of 2D to 3D structures represents
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an important issue for in silico drug design, since, for example,
3D structures of ligands are necessary for molecular docking or
pharmacophore modeling.
Many software packages are able to convert 2D representa-

tions to 3D structures directly, but this is usually an error-prone
process that rarely may be used alone to produce highly
accurate 3D structural representations. One example error is
the generation of deformed nonplanar aromatic rings after
conversion of 2D representations to 3D structures,28 a
structural feature that is certainly far from what would be
observed in crystal structures. Therefore, it is very convenient
to use a geometry optimization method (also known as energy
minimization) to refine 3D structures in order to adjust bond
length, angle, and torsion.
In the first lab class, students draw the 2D representations of

eight NSAIDs using ChemSketch 12.029 and save each in
separate files (interchangeable mol format) to be opened in
ArgusLab 4.0.22 These eight NSAIDs are nonselective COX
inhibitors (inhibit both the COX-1 and COX-2 isoforms) and
belong to two different subclasses: propionic acids (ibuprofen,
ketoprofen, naproxen, and flurbiprofen) and aryl/heteroaryl
acetic acid derivatives (tolmetin, etodolac, indomethacin, and
sulindac).
Except for indomethacin and tolmetin, all these NSAIDs

have two stereoisomers or geometrical isomers (e.g., sulindac).
In this process, students will draw only the most active
enantiomer/geometrical isomer to define a correct pharmaco-
phore model at the end of the lab. However, they must be
aware that different enantiomers and geometrical isomers may
have not only different affinities for the pharmacological target
but also different pharmacokinetic and toxicity profiles, as
exemplified by the preference of human albumin by the active
S-enantiomer of ketoprofen.30

The 2D representations are automatically converted using
the 3D optimization feature in ChemSketch, a 3D optimization
algorithm modified from a molecular mechanics package
(CHARMM) that takes into account bond stretching, angle
bending, internal rotation, and van der Waals nonbonded
interactions.31

Once in ArgusLab, proper stereochemistry of the NSAIDs
can be easily confirmed by simply rotating the lowest priority
group toward the back (Cahn−Ingold−Prelog rule set) and
observing whether the other three branches are ordered in
clockwise (R) or counterclockwise (S) fashion. Each structure
is submitted for geometry optimization using the PM3
(parametrized model number 3), a semiempirical force field
based on the neglect of differential diatomic overlap (NDDO)
integral approximation.32 Besides observing in “real time” the
adjustments to bond length, angle, and torsion on the computer
screen, students may confirm the efficiency of the method in
optimizing the 3D geometry of the NSAIDs by calculating the
percentage change between the initial and final energy of each
compound after energy minimization.
The 3D optimized NSAID structures are used to generate a

pharmacophore model to screen potential inhibitors of COX. A
pharmacophore can be viewed as the maximum common
denominator of a group of molecules that exhibit similar
pharmacological profiles by acting at the same site of a target.33

A pharmacophore relies on a 3D point of view of molecules
since it reflects the way medicinal chemists characterize the
binding ability of molecules for a given target.34 Therefore,
students must keep in mind that the goal of geometry
optimization here is to calculate bond lengths that are similar to

the corresponding ones in the crystallographic pivot, a
minimum requirement to achieve a reliable pharmacophore
model.
For the generation of the pharmacophores, the PharmaGist

web server allows assignment of a “pivot” molecule on which
the other target ligands are aligned.35 Students use the NSAID
diclofenac in its bioactive conformation, as found in the
cyclooxygenase active site of the enzyme (PDB code: 3N8Y), as
the “pivot” structure. This is an opportunity to discuss with
students that, based on the induced fit theory, the bioactive
conformation of a flexible ligand does not necessarily
correspond to the lowest energy conformer, as it would be
intuitive to think.36 The link with the resulting pharmacophores
generated by the PharmaGist web server is sent by e-mail to
students to be analyzed in the next computer lab.
By starting with simplistic two-dimensional drawings of

chemical structures to study their corresponding stereo-
chemistry, bond lengths, angles, and torsions in more complex
3D models and to finally build and analyze a very abstract
concept such as a pharmacophore, a progressive learning
approach is provided by which students can move toward more
sophisticated understanding of important scientific concepts.
The move toward expertise requires building a more complex
idea upon the understanding of some underpinning knowledge,
and incorporating more ideas and connecting to ideas of other
related topics.37

Lab 2. Pharmacophore Screening and Homology Modeling

The pharmacophore models generated in the first class are
analyzed by students, and the top-scoring pharmacophore
hypothesis in which all nine structures are aligned is selected.
This pharmacophore model is composed of three features: two
hydrogen bond acceptors (represented by the two oxygen
atoms of the carboxylate), a negative ion (carboxylate), and the
aromatic ring of the phenylacetic acid moiety of diclofenac
(Figure 1). To confirm the validity of this model, students

analyze the interactions of the amino acid residues in the
cyclooxygenase site of the enzyme with the corresponding
pharmacophore groups for the aryl acetic acid NSAID
diclofenac (PDB code: 3N8Y, chain A) and for the propionic
acid NSAID ibuprofen (PDB code: 1EQG, chain A) using
Ligand Explorer, a very accessible Java-based program available
from RCSB Protein Data Bank, that allows visualizing the

Figure 1. Pharmacophore model generated in PharmaGist and
visualized in Discovery Studio Visualizer. The selected model
comprises two hydrogen bond acceptors, one negative ion, and one
aromatic feature.
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interactions of bound ligands in protein and nucleic acids
structures.38

By comparing the two protein−ligand complexes, students
will notice the hydrogen bonding interactions involving the
carboxylate of diclofenac and the Tyr385/Ser530 residues of
COX-1 and the hydrogen bonds between the same group of
ibuprofen with Arg-120 and Tyr-355, which are reported to be
critical for ligand binding.39,40 At the same time, they will
confirm that the aromatic feature detected by PharmaGist is
also important for binding due to the establishment of
hydrophobic interactions with Trp-387, Gly-526, and Ala-527
for diclofenac and with Val-349/Ala-527 for ibuprofen (Figure
2). Therefore, the pharmacophore model is considered viable
for the screening of potential inhibitors of COX-1.
By understanding the concepts behind the construction of a

pharmacophore, students will realize that compounds exerting
similar activities at the same enzyme or receptor possess, in
most cases, closely related binding properties due to similar
chemical features in sterically consistent locations.34 Addition-
ally, this is an opportunity to illustrate to students that a
pharmacophore model, prepared on the basis of only the
structural information on ligands, may successfully predict the
most important features for the interaction of a ligand within
the active site of a drug target.
The pharmacophore-based screening is performed using

ZINCPharmer, a free pharmacophore search web server for
screening purchasable compounds from the ZINC database.41

Students recover the 3D information (x, y, and z coordinates)
of the pharmacophore features generated by PharmaGist using
Discover Studio Visualizer 4.042 and perform a search in
ZINCPharmer in order to select the 50 top-scoring compounds
for use in molecular docking simulations. The notion that this
pharmacophore screening is based purely on the presence and
arrangement of pharmacophore features and does not account
for steric effects is discussed with students. Consequently, this
method alone does not definitely ensure complementarity at
the ligand binding site.43 The advantages of choosing a strategy
that relies on a pharmacophore model as a prescreening step
prior to docking-based virtual screening include providing
additional information to improve docking results and
significantly shortening the amount of computer time required
for docking.44

Although this virtual screening is only for educational
purposes, students must keep in mind that the selected
compounds could be purchased from ZINC and tested in vitro
for their potential to inhibit COX. Consequently, this process
simulates a feasible drug design pipeline that could be used in
academia or small pharmaceutical companies. Additionally, by
simulating scientific activities, cognitive skills tend naturally to
shift from slower, effortful, and consciously controlled rational
operations to more intuitive operations, which are faster,
automatic, effortless, and associative.45 Therefore, computer
simulations demonstrate great potential for providing creative

Figure 2. (A) 3D view of the binding site of the crystallographic structure of COX-1 with diclofenac (PDB code: 3N8Y) showing two hydrogen
bonds (Tyr-385 and Ser-530, 2.7 and 2.5 Å, respectively) and the hydrophobic pocket in cyan (Ala-527, Ile-523, Val-349, and Trp-387). Although a
glycine amino acid does not have a hydrophobic side chain, it contributes to the stabilization of the hydrophobic pocket. (B) 2D Jmol representation
of the main interactions of diclofenac. (C) 3D view of the binding site of the crystallographic structure of COX-1 (PDB code: 1EQG) with
ibuprofen, showing the hydrogen bonds between the carboxylate of ibuprofen with Arg-120 and Tyr-355 (2.8−2.9 and 2.8 Å, respectively) and also
the hydrophobic interactions with Val-349/Ala-527. (D) 2D Jmol representation of the main interactions of ibuprofen.
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learning environments that act as very useful intermediates
between the classroom and the real world.
The importance of 3D protein structures for molecular

docking studies is introduced. However, since there is no
experimental 3D structure available for the human COX-1
enzyme, a homology model must be derived using the ovine
homologue. Therefore, students use the amino acid sequence of
the human COX-1 to retrieve the ten top-scoring sequences of
COX homologues with solved 3D structures using the NCBI
Blast server.46 Considering that the COX-1 homologues, with
just over 600 amino acids, share about 85−90% sequence
identity among different species,47 the homology of structure
can be inferred since these values are significantly higher than
the homology cutoff of 25% sequence identity for long
alignment lengths (>250 residues).48 For practical purposes, a
minimum of 40% of sequence identity must be assumed to
build satisfactory models using the most popular modeling
packages.49

This is a discussion topic to help students remember
important concepts regarding homology modeling, such as (1)
homology between amino acid sequences suggests structural
and functional similarity, (2) homologous proteins contain
conserved internal domains (composed mainly of secondary
structure elements: α-helices and β-sheets), and (3) the loop
regions are typically much more divergent.50 Another
important point is that the conserved protein regions include
the catalytic portion of the enzyme where docking simulations
will be performed.
The SWISS-MODEL server is used to build the 3D model of

the human COX-1 enzyme.51 Although the server allows the
construction of a model by providing the amino acid sequence
of the query protein and the PDB code of the homologous
protein 3D template (Automate Mode), the model is
constructed on the basis of multiple sequence alignment
composed of the query sequence (human COX-1) plus the ten
sequences previously retrieved in the Blast search (Alignment
Mode). Although one can theoretically construct a homology
model based on only the pairwise sequence alignment between
the query and the 3D template, the use of multiple sequence
alignment of structurally related proteins tends to minimize the
probability of errors in the process.52 Using the multiple
alignment of the sequences in the EMBL-EBI ClustalW web
server,53 the underlying theory of sequence homology, i.e.,
which sites share a common evolutionary history,54 is discussed
with students.
The homology model is built in SWISS-MODEL on the

basis of the 3D structure of the ovine COX-2 enzyme
cocrystallized with ibuprofen (PDB code: 1CQE). Although
backbone atom positions can be more easily assigned by
SWISS-MODEL when the aligned residues are identical,
regions of insertions or deletions (gaps) in the target-template
alignment require the use of a scoring scheme that accounts for
force field energy, steric hindrance, and favorable interactions,
such as hydrogen bond formation, to select the best loop.
Regarding side-chain modeling, the most likely conformation is
selected by the use of a backbone-dependent rotamer library in
association with a scoring function that determines favorable
interactions (hydrogen bonds, disulfide bridges) and unfavor-
ably close contacts. Finally, deviations in the protein structure
geometry are regularized in the last modeling step by a steepest
descent energy minimization using the GROMOS96 force
field.51

Model validation is performed using built-in scoring
functions for the estimation of the protein structure model
quality (QMEAN4 score and QMEAN4 Z-score) and by the
Ramachandran plot generated online.55 QMEAN4 (qualitative
model energy analysis) is a composite scoring function that
describes the major geometrical aspects of a single protein
structure and, consequently, reflects the general reliability of the
model.56 When the QMEAN4 score of a model is compared to
distributions obtained from high-resolution structures solved by
X-ray crystallography, a resulting scoring function called
QMEAN4 Z-score is generated. Therefore, the QMEAN4 Z-
score is an estimate of the “degree of nativeness” of the
structural features observed in a model by describing the
likelihood that a model is of comparable quality to high-
resolution experimental structures.57

The Ramachandran plot relies on the principle that, due to
steric hindrance, the main chain of a polypeptide usually
assumes preferred, energetically favorable conformations.
Therefore, deviations from the preferred conformations can
then be used as indicators of potential errors in the model. In
the Ramachandran plot, two torsion angles are used to describe
the rotations of the polypeptide backbone around the bonds
between N−Cα (called phi, φ) and Cα−C (called psi, ψ).
Consequently, the plot provides an overview of the allowed and
disallowed regions of the torsion angle values and serves as an
important factor in the assessment of the quality of protein
three-dimensional structures.58

Regardless of the validation method used, students must
understand the importance of the model since the generated
model must be sufficiently accurate to provide detailed
structural information necessary for molecular docking. The
ligand ibuprofen from the ovine COX1 structure (PDB code:
1EQG) is inserted into the binding site of the modeled human
COX1 structure for use with ArgusLab software for molecular
docking since the software uses the ligand coordinates to define
the binding site.22

In addition to building and validating a model, this is also an
opportunity for students to manipulate protein models in order
to visualize important protein features, such as α-helices, β-
sheets, loops, and binding sites. Although a simple exercise, this
may have a very positive impact on learning, since the mental
picture of three-dimensional objects is one of the crucial
problems students face in structural chemistry, biochemistry,
and cell biology.59 Also, students may use both instructor- and
self-guided visualizations of protein structures complexed with
drug molecules to gain understanding in the process of
protein−drug interactions, understanding the importance of
functional groups in the drug and the noncovalent interactions
performed with the target.60

Lab 3. Docking-Based Screening and
Pharmacokinetic/Toxicity Predictions

An emerging viewpoint of cognition suggests that the body has
a central role in shaping the mind and that cognitive processes
are deeply rooted in the body’s interaction with the world that
“embodied cognition or learning.”61 If so, the documented
difficulties for learners to grasp and to engage in molecular
sciences might, at least in part, be explained by the lack of direct
experience of the micro world. Although molecular modeling
simulations are important for the analysis of biomolecular
structures and to understand molecular interactions better, they
also provide new ways of teaching that can be powerful
cognitive aids for the understanding of the structural require-
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ments of ligands necessary for their interaction with
pharmacological targets.62

Molecular docking approaches are useful to model
interactions between small molecules and proteins at the
atomic level: both for characterizing the behavior of these small
molecules at the binding site and for the elucidation of
fundamental biochemical processes.63 Via molecular docking
using ArgusLab, the 50 compounds selected in the
pharmacophore screening are rescored. This is a very popular
molecular modeling package within academia because of its
user-friendly interface and intuitive calculation menus.64 It is
important to note that users may experience some problems
with stability, especially when running ArgusLab under 64 bit
versions of MS Windows. For these situations, the use of
Autodock Vina65 or web-based docking services such as
DockThor66 is recommended.
Before starting the virtual screening protocol, an initial

validation of the docking procedure is performed by
comparison of the conformation, position, and orientation
(which are referred to as pose) of the docked ligand with the
corresponding pose of the ligand cocrystallized with the target.
The accurate docking of the crystallographic ligand at the
protein binding site, a process known as redocking, is
considered to be a minimum requirement to determine
whether the selected docking parameter is appropriate for the
proposed task or not.67 This comparison is made through the
root-mean-square deviation (rmsd) value, a measure of the
average distance between atoms of the reference and the
docked ligand.
Although an rmsd threshold value of 2.0 Å is widely accepted

as distinguishing between success and failure in reproducing a
known binding mode,68 this criterion must be viewed with care
depending on the number of rotatable bonds of the ligand since
docking programs may have trouble predicting the correct
positioning of very flexible ligands.69 In these simulations,
redocking of ibuprofen in the active site of human COX-1 using
the GADock docking engine yielded an rmsd of 1.99 Å, a value
considered appropriate for academic purposes (Figure 3).
Conceptually, the docking process may be subdivided into

two basic steps: sampling conformations of the ligand in the
active site of the protein (i.e., reproduce the experimental
binding mode), and then ranking these conformations via a
scoring function (assessment of the binding affinity).70 Docking
of the 50 compounds derived from the ZINC database is
performed using the GADock docking engine, handling the
ligand as flexible. Ideally, the flexibilities of both the ligand and
receptor must be considered in docking simulations since both
the ligand and receptor change their conformations to form a
minimum energy perfect-fit complex.70 However, the computa-
tional cost is very high when the receptor is also flexible, and
this feature is not available for ArgusLab.
GADock is a built-in genetic sampling algorithm of

ArgusLab.29 Genetic sampling algorithms are inspired by
Darwin’s theory of evolution. Here, the degrees of freedom
of the ligand are encoded as binary strings called “genes” that
make up a “chromosome”, thus actually representing the pose
of the ligand.70 Therefore, genetic algorithms demand that the
fittest “individuals” (poses) are carried on to the next
generation, and random or biased mutations can be made to
increase genetic (conformational) diversity.71

Through the use of its built-in scoring function, AScore,29

ArgusLab ranks the compounds in order of the suggested
binding affinity (kcal/mol). Binding affinity energies tend to be

expressed as negative values because they are experimentally
quantified through the Gibbs free energy for binding, ΔGbind,
which is related to a binding constant (eq 1):

Δ = −G RT Klnbind b (1)

where R is the gas constant, T is the temperature in kelvins, and
Kb is the binding constant. As binding energy indicates how
well a protein and a ligand can bind to each other, then, the
more negative the binding energy, the stronger the binding
between the two molecules.72 As an empirical scoring function,
the AScore decomposes the predicted binding energy into
several energy components, such as hydrogen bond, van der
Waals interactions, hydrophobic effect, and deformation effect
upon binding.29,73 For an overview of docking concepts,
sampling algorithms, and scoring functions, see Meng et al.70

Recently, pharmaceutical companies have worked to reduce
the number of projects interrupted due to toxicity or
pharmacokinetics issues by predicting and optimizing the
absorption, distribution, metabolism, excretion, and toxicity
(ADMETox) properties of chemical compounds throughout
the drug discovery process, rather than at the final stages.74 To
illustrate that ADMETox properties can be predicted from
chemical structures, the Osiris Property Explorer tool is used to
analyze the ten top-scoring compounds from the docking-based
virtual screening.75 Osiris Property Explorer allows the
estimation of varied toxicity effects (mutagenicity, tumor-
igenicity, skin irritation, and reproductive effects) through the
identification of potentially hazardous fragments in the query
compound based on comparison to known toxic molecules.
The server also calculates druglikeness scores and allows the
prediction of other parameters that affect druglikeness, such as
LogP (i.e., the ratio of concentrations of un-ionized compound
between lipophilic and hydrophilic phases), solubility, and
molecular weight. After the analysis of all these properties,
students are able to decide which compound(s) would be the

Figure 3. ArgusLab’s docking grid. In light gray, the crystallographic
conformation of ibuprofen; in dark gray, the top ranked docked
solution. Docking was performed using GADock docking engine,
handling the ligand as flexible (rmsd = 1.99 Å).
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most promising to be synthesized and tested for the inhibition
of the COX enzyme.

■ CONCLUSIONS

A series of computational laboratories was introduced to give
graduate students a practical experience with some important
issues regarding the drug design process, such as the study of
target−ligand interactions, geometry optimization, molecular
docking, pharmacophore, and homology modeling. The use of
freely available software and web servers makes these
pedagogical resources useful and easily implementable in
almost any institution. Furthermore, these laboratories are
effective for illustrating to students the drug discovery
approach, starting from the structure of known drugs to obtain
potentially bioactive and safer compounds.
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