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ABSTRACT: Hands-on exercises are designed for undergraduate
physical chemistry students to derive two-dimensional quantum
chemistry from scratch for the H atom and H2 molecule, both in
the ground state and excited states. By reducing the mathematical
complexity of the traditional quantum chemistry teaching, these
exercises can be completed independently by students who have basic
calculus skills. Students are expected to convert the Laplacian into the
polar coordinates; solve the Schrödinger equations for the two-
dimensional H atom; write out the electron configurations and atomic
terms for many-electron atoms; solve the Schrödinger equations for
the H2 molecule; obtain its potential energy surfaces in the ground
state and excited states; examine the individual kinetic, attractive, and
repulsive energy components; and plot and visualize the bonding and
antibonding molecular orbitals of the two-dimensional H2. In summary, various exercises are designed for students to derive
quantum chemistry for atoms and molecules in two dimensions, from scratch, by themselves. These exercises help reinforce
students’ understanding of quantum chemistry of real atoms and molecules in three dimensions; they also challenge students to
derive quantum chemistry for a fictitious two-dimensional world and to critically evaluate the validity of their derivations. These
challenges may help students climb up Bloom’s Taxonomy Pyramid of educational objectives toward its highest levels: synthesis
of new knowledge and critical evaluation.

KEYWORDS: Upper-Division Undergraduate, Physical Chemistry, Computer-Based Learning, Quantum Chemistry,
Computational Chemistry, Student-Centered Learning

■ INTRODUCTION

Solving the Schrödinger equation of the H atom is an
important topic in the teaching of undergraduate quantum
chemistry because it allows students, for the first time, to see
how the electronic structure of a real chemical system is
computed. However, rarely do quantum chemistry instructors
explain in detail how this Schrödinger equation is actually
solved, possibly for one or more of the following reasons:

(i) The math is too hard; it involves converting the
Laplacian from the Cartesian coordinates into the polar
spherical coordinates (included in Appendix A in the
Supporting Information) and solving Laguerre and
Legendre differential equations.

(ii) Even if an instructor takes the effort and time to illustrate
the derivation in class, a significant portion, if not all, of
the chemistry students may get overwhelmed and even
intimidated by its mathematical complexity.

(iii) A small portion of students who can follow the
derivation, if there are any, will more likely be just
following rather than actively learning.

To better teach this topic, it is necessary to reduce its
mathematical complexity to involve the students in a more
active learning process: students should not just sit back and

watch instructors derive on the board but also roll up sleeves
and do the derivation themselves. One way to achieve these
goals, assuming students make a reasonable amount of effort, is
to reduce the dimensionality of the problem from three to two.
Computation of the electronic structure of the two-dimensional
H atom resembles its three-dimensional counterpart, but with
much reduced mathematical complexity, while further reducing
the problem to one dimension results in enhanced complexity
because the ground state of the one-dimensional H atom
disappears.1,2 Students with basic calculus skills should be able
to solve the easier two-dimensional Schrödinger equations and
are expected to develop confidence in and even appreciation for
learning this otherwise hard topic. In traditional quantum
chemistry teaching, many-electron atoms and molecules are
studied after the H atom. The same route is adopted in this
paper to provide a more complete overview of atomic and
molecular chemistry in two dimensions, which may help
students through their learning of the real-world quantum
chemistry. In addition, these exercises challenge students to
derive quantum chemistry for a fictitious two-dimensional
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world and to critically evaluate the results of their derivation;
these challenges may help students climb up Bloom’s
Taxonomy Pyramid of educational objectives toward its highest
levels, synthesis of new knowledge and critical evaluation.3

In the following sections, we will illustrate the construction
and solution of the Schrödinger equation of the two-
dimensional H atom, extend the quantum theory to many-
electron atoms, study the ground and excited states of the H2
molecule, and propose hands-on exercises suitable for under-
graduate students. It is hoped that, by completing some or all of
the proposed exercises, students may feel that learning
quantum chemistry is not that hard, it is achievable, and
sometimes, it can even be fun.

■ THEORETICAL DERIVATION AND NUMERICAL
COMPUTATION

Hydrogen Atom

The two-dimensional Laplacian operator ∇2 has a simple form
in Cartesian coordinates:
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∂

+ ∂
∂x y

2
2

2

2

2
(1)

For convenience and clarity, subscripts of all partial derivatives
are omitted with the assumption that when a partial derivative
is taken with respect to an independent variable, all other
respective independent variables are held constant.
The Cartesian coordinates x, y can be expressed in the polar

coordinates as follows:
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Using the chain rule, ∂
∂x

and ∂
∂y

can be expressed in terms of r

and ϕ:

ϕ ϕ
ϕ

∂
∂

= ∂
∂

− ∂
∂x r r

cos
sin

(4)

ϕ ϕ
ϕ

∂
∂

= ∂
∂

+ ∂
∂y r r

sin
cos

(5)

The second derivatives ∂
∂

f
x

2

2 and
∂
∂

f
y

2

2 can thus also be expressed in

terms of r and ϕ:

ϕ ϕ ϕ
ϕ

ϕ
ϕ

ϕ ϕ ϕ
ϕ

∂
∂

=
∂
∂

−
∂

∂ ∂
+

∂
∂

+
∂
∂

+
∂
∂

f
x

f
r r

f
r r

f

r
f
r r

f

cos
2 sin cos sin

sin 2 sin cos

2

2
2

2

2

2 2

2

2

2

2

2 (6)

ϕ ϕ ϕ
ϕ

ϕ
ϕ

ϕ ϕ ϕ
ϕ

∂
∂

=
∂
∂

+
∂

∂ ∂
+

∂
∂

+
∂
∂

−
∂
∂

f
y

f
r r

f
r r

f

r
f
r r

f

sin
2 sin cos cos

cos 2 sin cos

2

2
2

2

2

2 2

2

2

2

2

2 (7)

The two-dimensional ∇2 can then be expressed as follows
(more detailed derivation can be found in Appendix B in the
Supporting Information):
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The Schrödinger equation for the two-dimensional H atom in
the atomic units is thus
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It is assumed in the above equation that the kinetic energy of
the nucleus is negligible and that the two-dimensional atomic
units are the same as for its three-dimensional counterpart:

=m 1 aue (10)

=e 1 au (11)
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The derived atomic units for length and energy are also
assumed to be the same as for their three-dimensional
counterparts:
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Setting ψ = R(r)Φ(ϕ) to separate the two variables in eq 9, we
have
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After rearranging the above equation to separate the
variables, we have
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Because the left-hand side of the above equation is
independent of r while the right-hand side is independent of
ϕ, both sides must be equal to a constant, which is set to be l2:

ϕ
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ϕΦ = ϕ( ) e mi l (19)

Here, l is non-negative and ml = ±l. The physical meaning of l
is the magnitude of the angular momentum, and l must be an
integer to ensure the periodic boundary condition of the
angular function Φ. Unlike its three-dimensional counterpart
(where ml can adopt any integer value from − l to + l), the
values of ml can only be ±l for the two-dimensional H atom,
which, we will show later, has a significant effect on writing the
electron configurations and atomic terms for many-electron
atoms. Although ml alone is sufficient to describe the two-
dimensional quantum rotation, the introduction of l = |ml| as
the magnitude of the angular momentum makes a parallel with
its three-dimensional counterpart; it is also in accordance with
the more general Laplacian in D dimensions developed by
Louck:4
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From eqs 17 and 18, the differential equation for the radial
function of H in two dimensions can be obtained:
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Complete and partial solutions to the above equation can be
found in various papers.5−10 Nonetheless, students would
benefit from solving this equation by themselves; however, they
should be provided the form of the hydrogen atomic orbital
functions, a product of an exponential function and an
associated Laguerre polynomial function. With the 1s orbital
of the two-dimensional H atom as example, its angular wave
function is trivial: l = 0, ml = 0, Φ(ϕ) = eimlϕ = 1, while its radial
function can be obtained by solving the following equation:
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We conjecture that R = e−br, similar to its three-dimensional
counterpart; the above differential equation is transformed to a
polynomial equation:
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For the above polynomial equation to hold true at all values
of r, we have
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For clarity, the normalization factor is neglected in the above
1s wave function and all other wave functions in this paper.
Note that the 1s orbital of the two-dimensional H atom is
tighter with a more negative exponential coefficient than its 3D
counterpart (e−2r vs e−r) and has more negative energy (−2 au
vs −(1/2) au). The expectation value of the attraction energy is
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The expectation value of the kinetic energy of the 1s electron is
thus Ekinetic = E − Epotential = (−2) − (−4) = 2 au; the result is in
accordance with the virial theorem.
For conciseness, the detailed derivations for the 2s, 2p, 3s,

3p, and 3d orbitals are included in Appendix C in the
Supporting Information; the results, including the orbital wave
functions and orbital energies, are summarized below in Table
1.
Table 1 shows that the atomic orbital wave functions in two

dimensions are in general tighter (with more negative
exponential coefficients) than their three-dimensional counter-
parts: e−r/(n−0.5) (2D) versus e−r/n (3D), and that the atomic
orbital energies in two dimensions are more negative:
−

−
(2D)

n
1

2( 0.5)2 vs − (3D)
n
1

2 2 .

Many-Electron Atoms

Like their three-dimensional counterparts, the two-dimensional
many-electron atoms do not have analytical solutions.

However, the electronic structures of the two-dimensional
atoms can be constructed approximately using atomic orbitals
similar to those of the H atom. The first three rows of a
conjectured periodic table for the two-dimensional atoms are
constructed using the Aufbau principle in Figure 1. Note that
any orbital with l ≥ 1 can hold up to only four electrons
because the values of ml can only be ±l in a fictitious two-
dimensional world.

In the periodic table in Figure 1, electrons are conjectured to
occupy the 3d orbitals before the 4s orbitals because of the
larger energy spacing between n = 3 and n = 4 for the
hydrogen-like atomic orbitals in two dimensions. However, the
E3d < E4s energy ranking for atoms in two dimensions is merely
a conjecture until various other factors are carefully analyzed as
in the three-dimensional case.11 The accurate energy ranking of
the 3d and 4s orbitals may entail a serious effort of modifying
existing computational chemistry software for the two-dimen-
sional case.
Writing the atomic terms of atoms in two dimensions is

easier than for its 3D counterpart. Taking the d2 electron
configuration as an example, its six microstates (compared with
the 45 microstates of its 3D counterpart) and three atomic
terms are illustrated in Table 2. A different rule of ML = ±L is
applied to the two-dimensional case in comparison to the |ML|
≤ L rule for its three-dimensional counterpart.

Table 1. Wave Functions and Corresponding Energies for
the Two-Dimensional H Atom

Orbital Wave Function Energy, au
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aHere, f(r) is an l-th order polynomial function of r with (n − l)
distinctive positive roots, each of which corresponds to a circular node.

Figure 1. Conjectured periodic table of two-dimensional atoms with
valence electron configurations.
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H2 Molecule

The transition from atomic chemistry to molecular chemistry is
a crucial step in the learning of quantum chemistry. Exercises
involving analytical derivation and spreadsheet calculation for
solving the Schrödinger equation for the H2 molecule were
designed for students to better understand quantum chem-
istry,12,13 so were the Monte Carlo integration enabled
spreadsheet calculations of H2 in its S0, S1, and T1 electronic
states.14 Herein, the Monte Carlo integration method14 is used
to calculate the electronic energy of the two-dimensional H2
molecule using the following equation
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where 1 and 2 are the two electrons, and A and B are the two H
nuclei. The following antisymmetric wave functions are used for
the singlet ground state (S0), the first excited singlet state (S1),
and the first triplet excited state (T1)
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where σ and σ* denotes the sigma bonding and antibonding
molecular orbitals in H2.
The expectation value of each energy component is then

estimated on a spreadsheet using the Monte Carlo integration
method14 taking the e−e repulsion as example:
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Here, V is the two-dimensional volume within which the
positions of the two electrons are randomly sampled Nsampling
times (Nsampling = 40,000 for the calculations presented in this

paper). ψk is the wave function of the two electrons of the k-th
sampling, and

r
1

k
12

is the respective e−e repulsion. The attractive

terms between the electrons and the nuclei are estimated in a
similar manner. The calculation of the kinetic energy of the
electrons, however, requires some mathematical derivation
beforehand with details presented in a previous paper.14

It is impractical to sample the positions of the electrons in an
infinitely large two-dimensional space. Instead, we decide to
perform the Monte Carlo integration within a rather small area
of V = 3 × (3 + RAB) as illustrated in Figure 2, where RAB is the

internuclear distance. This is because 98.3% of the 1s electron
density of the H atom is contained within the shell of a 1.5 au
radius:
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Also, in the H2 molecule, electrons are attracted even more
toward the center of the H2 bond owing to the attraction from
two H nuclei compared with only one in the atomic case.
Spreadsheet calculations were carried out for the two-

dimensional H2 using the Monte Carlo integration method.14

The calculated potential energy surfaces (PES) of the S0 ground
state and the S1 and T1 excited states are presented in Figure 3.
Note that the PES in the ground state does not level off
properly at the dissociation limit because a single-determinant
wave function that forces the pairing of the bonding electrons is
insufficient to describe a severely stretched bond. However, the
PES in the T1 excited state, in which the two electrons are not
forced to be paired, levels off properly at the dissociation limit
to E = −4 au, which equals the total energy of two separate H
atoms in two dimensions.
For students to dissect the energy profile of the H2 molecule

in the ground and excited states, the kinetic energy, attraction,
and e−e repulsion energy components are presented in Figure
4. The electrons in the S1 and T1 excited states of H2 have
much higher kinetic energy than those in the S0 state at the
equilibrium bond distance of 0.4 au, and the difference
increases/decreases rapidly as the H2 bond is compressed/
stretched. The attraction energy difference between the excited
states and the ground state is relatively small, and this difference

Table 2. Six Microstates of the d2 Electron Configuration of
Two-Dimensional Atoms

ml

−2 2 ML = ∑iml,i MS = ∑ims,i L, S Atomic Term

↓↑ −4 0 4, 0 1G
↓↑ 4 0

↑ ↑ 0 1 0, 1 3S
↑ ↓ 0 0
↓ ↓ 0 −1
↓ ↑ 0 0 0, 0 1S

Figure 2. Two-dimensional H2 with a bond length of RAB placed in a
box. The dimensions of the box, also in au, illustrate the limits of the
integrals calculated on the spreadsheet.
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diminishes as the bond distance approaches zero or infinity:
when RAB → 0, each of the four attractive terms approaches −4
au in the S0, S1, and T1 states; when RAB → ∞, only two
attractive terms approach −4 au while the other two terms
approach zero. In the e−e repulsion plot, the nearly 2 au
difference between the S1 and T1 states originates from the
exchange energy.
After the bond distance of the two-dimensional H2 is

optimized using the PES in Figure 3, the bonding (σ) and
antibonding (σ*) molecular orbitals of the two-dimensional H2
molecule at the equilibrium bond distance (Req = 0.4 au) are
calculated at intervals of 0.2 au in both x and y dimensions on a
separate spreadsheet using the following equations:

σ = + = +− −1s 1s e er r
A B

2 2A B (34)

σ* = − = −− −1s 1s e er r
A B

2 2A B (35)

where

= + +r x y( 0.2)A
2 2

(36)

= − +r x y( 0.2)B
2 2

(37)

Due to the lower dimensionality of the 2D H2 molecule, its
molecular orbitals in their entirety, rather than the cut views,
can now be illustrated in Figure 5.

■ EXERCISES FOR STUDENTS
The exercises for students are categorized into two parts: Part I,
Atomic Chemistry, and Part II, Molecular Chemistry. Both
parts are proposed for students to accomplish independently or
with as little external help as possible.
Part I. Atomic Chemistry

Students should be able to convert the Laplacian from the two-
dimensional Cartesian coordinates to the polar coordinates,
solve the Schrödinger equation for two-dimensional H atom to
obtain the 1s and higher-energy atomic orbitals, obtain the
corresponding atomic orbital energies, analyze the individual
energy components, and write out electron configurations and
atomic terms for the two-dimensional many-electron atoms.
Detailed derivations are included in Appendices B and C in the
Supporting Information in case students need additional help
to complete these exercises.

Part II. Molecular Chemistry

Students should be able to solve the Schrödinger equation for
the two-dimensional H2 on a spreadsheet, plot and visualize the
potential energy surfaces and energy components of the ground
and excited states of the two-dimensional H2, and plot the
molecular orbitals of the two-dimensional H2. More specific
instructions for students to complete this part are included in
the Supporting Information of a previous paper.14 Minor
modifications should be made: only the xy coordinates of
electrons should be used, and the 1s wave function in two
dimensions is tighter (ψ1s = e−2r).

Figure 3. Potential energy surfaces (PES) of the two-dimensional H2
in the S0, S1, and T1 electronic states. Error bars are plotted only for
the S0 ground state for better clarity of the graph.

Figure 4. Energy components of the two-dimensional H2 in the S0, S1,
and T1 electronic states. Error bars are plotted only for the S0 ground
state for better clarity of the graphs.
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Instructors are recommended to selectively assign these 2D
quantum chemistry exercises, before or af ter their 3D counter-
parts are taught. Whether or when to assign an exercise should
depend on multiple factors: students’ background, desired
learning outcomes, topics to be covered, and the amount of
time students are expected to spend on learning these topics.
For example, students may be asked to convert the 2D
Laplacian into the polar coordinates before they are introduced
to the 3D Laplacian conversion; this way, students will better
appreciate the results of the 3D conversion, even if the actual

derivation is not presented in class or worked out by
themselves. On the other hand, the exercise of solving the
Schrödinger equation for the H atom in two dimensions is
better assigned af ter students see the 3D solutions because it
requires prior knowledge of the form of the radial functions.
Although this 2D exercise does not constitute a complete
rigorous solution to the Schrödinger equation, it offers students
an opportunity for tackling new quantum chemistry problems
by connecting them to old ones. The exercises regarding the
electron configurations and atomic terms of atoms, as well as
the ones regarding the H2 molecule, closely resemble their
three-dimensional counterparts, but students may be encour-
aged to work on these exercises as well, if time permits, because
completing these exercises would force students to think
critically and creatively: For example, they need to explain why
in a fictitious two-dimensional world the 3d orbitals can
accommodate up to only four electrons.
In addition to the exercises proposed above, motivated

students may be encouraged to solve the Schrödinger equation
for the H atom in various dimensions (D = 1, 2, 3, 4) and
compare the results to “observe” the quantum confinement
effect from an interesting perspective by varying the
dimensionalities. Table 3 summarizes the 1s and 2s orbitals
in D dimensions (D = 1, 2, 3, 4); detailed derivation is included
in Appendix D in the Supporting Information. The quantum
confinement effect is illustrated by the dimensionality-depend-
ent energy spacing between the 1s and 2s orbitals. Beyond
atoms, students may also be challenged to think outside the
(3D) box with the task of studying the PES of the H2 molecule
in four dimensions.

■ CONCLUSIONS
It has been demonstrated that two-dimensional quantum
chemistry of the H atom and the H2 molecule can be derived
from scratch using only basic calculus skills. The derivation
from the Cartesian coordinates to the polar coordinates
becomes much more tractable than its three-dimensional
counterpart; the quantum descriptions of the H atom and the
H2 molecule in two dimensions may pave an alternative path
for students to better understand the real-world three-
dimensional quantum chemistry. The additional exercise
about the electronic structures of the four-dimensional H
atom and H2 molecule may further challenge the students to
truly think outside the (3D) box. Finally, the proposed
exercises constitute a complement to the existing “dry”
laboratories of quantum chemistry (which are few); these
exercises can also be used for homework problems,

Figure 5. Bonding (σ = 1sA + 1sB) and antibonding (σ* = 1sA − 1sB)
molecular orbitals of the two-dimensional H2 at equilibrium bond
distance (Req = 0.4 au).

Table 3. 1s and 2s Orbitals and Energies in au in D Dimensions (D = 1, 2, 3, 4)

Orbital or Energy 1Da 2D 3D 4D

ψ1s δ(r)a e−2r e−r −e r2/3

ψ2s re−r − −⎜ ⎟⎛
⎝

⎞
⎠r 3

4
e r2/3 − −r( 2)e r1/2 − −⎜ ⎟⎛

⎝
⎞
⎠r 15

4
e r2/5

= −
−

E
D

2
( 1)1s 2 −∞ −2 − 1

2
− 2

9

= −
+

E
D

2
( 1)2s 2 − 1

2
− 2

9
− 1

8
− 2

25

Δ =
−→E D

D
8

( 1)1s 2s 2 2 ∞ 1.778 0.375 0.142

aWhere δ denotes the Dirac delta function.
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collaborative projects, or exam questions in the undergraduate
level quantum chemistry lecture courses.
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