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ABSTRACT: In many textbooks of chemical-engineering
thermodynamics, a gas mixture obeying the fundamental law
pVm = RT is most often called ideal-gas mixture (in some rare
cases, the term perfect-gas mixture can be found). These
textbooks also define the fundamental concept of ideal solution
which in theory, can be applied indifferently to liquid or gas
mixtures but in practice, is nearly always introduced through the
instance of liquid solutions. Undergraduate students are thus faced
with different theoretical solution models that are all named
“ideal” which can be a source of confusion. It is indeed often
observed either that the connections between the concepts of
perfect gas and ideal solution are missed by undergraduate students, or that they do not make any distinction between the
concepts of gaseous ideal-solutions and perfect-gas mixtures. In this article, a simple example is proposed to pedagogically clarify
all the misconceptions inherited from the multiple definitions of ideal mixtures and to explicate the connections between the
various concepts in terms of molecular interactions. In particular, it is illustrated how an ideal solution (liquid or gas) can be
derived from a real mixture (liquid or gas) by imposing constraints on molecular interactions. Similarly, it is shown how a perfect-
gas mixture can be derived from a gas ideal-solution. At the same time, this example also highlights how the pressure and the
composition influence the ideal character of a mixture.
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■ INTRODUCTION

In most of reference chemical-engineering thermodynamics
textbooks,1−3 gases obeying the macroscopic law pVm = RT
(with p, the pressure; Vm, the molar volume; T, the
temperature; and R, the gas constant) are often named ideal
gases and rarely perfect gases, while liquids obeying Raoult’s
law are called (liquid) ideal-solutions. Although ideal solutions
are often introduced by considering the instance of liquid
mixtures, it is sometimes mentioned that the concept of ideal
solution is not limited to liquid solutions and is straightfor-
wardly transferable to gaseous solutions. Doing so, it becomes
necessary to define a gas ideal-solution (or something
equivalent) in addition to the ideal-gas mixture (or perfect-
gas mixture), both of them sharing a variety of common
features but exhibiting differences also.
According to our teaching experience, the multiplicity of

“ideal-mixture” definitions (ideal-gas/perfect-gas mixture, liquid
ideal-solution, and gas ideal-solution) can be source of
confusion for undergraduate students. As an illustration, let
us cite the following sentence stemming from the didactic
textbook by O’Connell and Haile4 which emphasizes the
difficulty to juggle with the terminologies: “Gas-phase ideal
solutions differ from ideal-gas mixtures” (page 430).

From a pedagogical viewpoint, it becomes necessary to
explicate carefully all the relationships between the various
concepts of ideal mixtures to avoid generalized confusion. It is
indeed often observed that students do not make a clear
distinction between the concepts of ideal-gas/perfect-gas
mixture and gas ideal-solution and that few of them realize
how the concepts of (liquid or gas) ideal solution and ideal-
gas/perfect-gas mixture are interrelated.
The first issue is rather simple to solve since it is solely a

matter of terminology: in our opinion, a gas obeying the
macroscopic law pVm = RT should always be called perfect gas
instead of ideal gas since, as described below, a perfect-gas
mixture is a particular case of a gas ideal-solution. Note that the
term perfect gas is rarely used in reference textbooks of
thermodynamics, with a few exceptions. Among them, let us
mention Rowlinson who wrote a comprehensive review entitled
“The Perfect Gas”5 as well as Atkins and De Paula who stated:6

“although the term “ideal gas” is almost universally used in
place of “perfect gas”, there are reasons for preferring the latter
term. In an ideal system [...] the interactions between molecules
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in a mixture are the same. In a perfect gas, not only are the
interactions all the same but they are in fact zero” (page 6).
Note incidentally that according to our bibliographic review,

a few isolated authorsessentially from the mechanical-
engineering communitydefine two categories of gases
obeying the law pVm = RT called ideal gas and perfect gas
depending on whether the heat capacities are temperature
dependent or not.7,8 There is no doubt that such a practice is
likely to add another degree of confusion in students’ minds
whereas there is no fundamental reason for introducing
different names for so similar mixtures. Consequently, any
gas obeying pVm = RT will be called perfect gas thereafter.
Once terminology issues are solved, the main pedagogical

challenge remains: how to clarify the relationships between a
perfect-gas mixture, a gas ideal-solution, and a real-gas solution
in thermodynamics courses? It is worth noting that this issue is
rarely discussed in the open literature dealing with education
aspects (whereas articles dealing only with ideal solutions are
much more frequent9−11).
This article is intended to propose a pedagogical way to

explicate the concepts of ideal mixtures to undergraduate
students. It is shown how the aforementioned relationships can
be easily highlighted through a practical example. The first
sections are devoted to a brief review of the macroscopic and
molecular interpretations of a perfect gas and an ideal solution.
The example used to connect the various concepts is then
discussed. It is worth noting that the proposed approach was
successfully implemented during the thermodynamic classes at
the ENSIC School (chemical-engineering department of the
University of Lorraine, France), as mentioned in the
subsequent sections.

■ MODEL FLUIDS

What is a Perfect Gas?

A perfect gas is macroscopically defined as a theoretical fluid
obeying the equation of state pVm = RT. From a molecular
viewpoint, a perfect gas is defined as a fluid in which the
individual gas particles have no interaction upon one another
(neither attraction, nor repulsion) (see page 67 of ref 12). In
other words, interaction energies A−A, B−B, and A−B in a
perfect-gas mixture of A and B are all set to zero (see page 2 of
ref 6). For illustration, Figure 1 compares the intermolecular
potentials of a real fluid (continuous line) and a perfect gas
(dashed line).
The perfect-gas law predicts that if a fixed quantity of gas is

cooled at constant pressure, its molar volume tends to zero as
the temperature tends to zero. Since lowering the temperature
cannot destroy the molecular volume, the only possible way
this condition can exist is for the molecular volume to be zero
justifying why perfect-gas molecules are often considered as
point masses. Alternatively, Elliott and Lira refer to the absence
of repulsive interactions in a perfect-gas mixture to justify the
point-mass behavior. They claim “Due to the lack of repulsive
forces, ideal gas particles can “pass through” one another. Ideal
gas molecules are sometimes called “point masses” to
communicate this behavior” (see page 19 of ref 13).
In practice, a perfect gas is a limiting case of real-gas behavior

given that any real fluid tends to behave as a perfect gas when
its pressure tends to zero (it is recalled that at a fixed
temperature and a zero pressure, the molecules of a fluid
dispose of an infinite volume and consequently, interactions
with other molecules become unlikely).

The chemical potential and the fugacity of any component i
of a perfect-gas mixture are
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̃ = · = ·
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where gi̅ and gpure i denote the chemical potential of mixed i and
pure i, respectively (note that the chemical potential is also
frequently denoted by the greek letter μ in chemical-
engineering textbooks: gi̅  μi and gpure i  μpure i); fĩ and
f pure i are the fugacities of mixed i and pure i, respectively ; the
superscript pg stands for perfect gas. T, p, and y are the
temperature, pressure, and mole-fraction vector of component
i, respectively.
What is an Ideal Solution?

Several definitions can be proposed for an ideal (liquid or gas)
solution depending on the scale used to describe the matter
(macroscopic or molecular). Historically, this concept has
emerged from the proposal of the Raoult’s law in the late 19th
century: an ideal liquid solution in equilibrium with a perfect-
gas mixture at fixed T and p obeys the relationship:

· = ·x p T y p( )i i
sat

i (2)

with xi and yi, the mole fractions of component i in the liquid
and gas phases, respectively; pi

sat(T) is the vapor pressure of
pure i at fixed T. From a molecular viewpoint, an ideal solution
A + B is often described as a mixture the intermolecular
potential energy of which is independent of the assignment of
the different molecules to the various locations (see page 803 in
ref 14). In practice, an ideal solution is obtained “if the
molecules of the various components are sufficiently alike from
the point of view of the molecular interactions which they exert
on one another, and from the point of view of their shapes and
sizes” (see page 316 in Prigogine and Defay15) or in other
words, if “the molecules have the same size and [if] the
intermolecular forces between pairs of like molecules of each
type, as well as between unlike molecules, are all the same” (see
page 177 in ref 16). It is thus claimed that the pair interactions
between like (A−A, B−B) and unlike (A−B) molecules must

Figure 1. Intermolecular potential energy (Ep) as a function of the
intermolecular distance (r) in real-fluid and perfect-gas systems.
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be equal. According to modern theories of mixtures (e.g., the
Kirkwood-Buff theory), this characterization of an ideal solution
is more a corollary than a definition (in other words, this is a
sufficient but not a necessary condition to observe ideal
solutions). Strictly speaking, the structural definition of an ideal
solution requires that the energy of A−B interactions (EA−B) in
the mixture is equal to the mean of the A−A and B−B
interactions in the pure fluids (necessary and sufficient
condition for the mixture to be ideal) (see page 168 in ref 6,
page 802 in ref 14, and ref 17). That is, we must have

⟨ ⟩ =
⟨ + ⟩

=
⟨ ⟩ + ⟨ ⟩

−
− − − −E

E E E E
2 2A B

A A B B A A B B
(3)

where the ⟨ ⟩ notation denotes the average over all molecular
orientations and environments.
In practice, there is no dilemma between both approaches

(i.e., equality of all pair interactions on one side; pair
interaction between unlike molecules equal to the average of
pair interactions between like molecules, on the other side)
since ideal solutions are experimentally observed in mixtures
containing closely similar molecules (e.g., isomeric mixtures).
Note that the general definition of an ideal solution clearly

includes the structural definition of a perfect-gas mixture for
which, the pair interactions A−A, B−B, and A−B are all equal
to zero. As a consequence and as stated in the introduction, a
perfect-gas mixture is a particular case of a gas ideal-solution.
Since the general structural definition does not mention the

state of the fluid (temperature, pressure, or composition), an
ideal solution must remain ideal regardless of the temperature,
pressure, or composition domains investigated.3,18

To conclude this section, let us mention that the chemical
potential and fugacity of any component i in a (liquid or gas)
ideal-solution are

̅ = +
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where the superscript id stands for ideal solution and z is the
mole fraction vector; ϕ denotes the aggregation state common
to the solution and the pure component i. It can be
immediately observed that eqs 1 and 4 are identical provided
ϕ = pg thus highlighting that a perfect-gas mixture is an ideal
solution (whereas the converse proposition is not true, as
detailed below).

■ GAS IDEAL-SOLUTION VERSUS PERFECT-GAS
MIXTURE: CLARIFICATION OF THESE CONCEPTS
THROUGH A PRACTICAL EXAMPLE

The application case presented in this section introduces a
simple model for the description of real-gas mixtures from
which, a model for gas ideal-solution and the model of perfect-
gas mixture can be derived by using appropriate assumptions
on pair-interaction coefficients thus highlighting the relations
between the three kinds of gaseous mixtures (real, ideal, and
perfect). This practical example was successfully tested out
during the present academic year with ENSIC School students:
during the final examination of the chemical-engineering
thermodynamics class, we observed that more than 80% of
our students were able to elaborate on the differences and
similarities between the concepts of real solutions, ideal

solutions, and perfect-gas mixtures whereas one year earlier,
this ratio was less than 20%.
In this section, a simple model for real-gas mixtures is

considered and makes it possible to:

• illustrate how a gas ideal-solution can be derived from a
real-gas mixture from a molecular viewpoint,

• illustrate how a perfect-gas mixture can be derived from
either a real-gas mixture or a gas ideal-solution.

A real (nonideal) gaseous N-component mixture is assumed
to be well described by the truncated virial equation of state:
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where Bii(T) denotes the temperature-dependent second virial
coefficient of pure i (reflecting the self-interaction energies in
pure i); Bmixt and Bij = Bji are the mixture second virial
coefficient and the so-called mutual second virial coefficient
(this latter reflects the cross-interaction energies in a binary
mixture of i and j), respectively.
For a binary system (1)+(2), by using the fact that y2 = 1 −

y1, Bmixt can be written in the form:

Consequently, the Bmixt coefficient aggregates the intermolec-
ular interactions between like pairs i−i and unlike pairs i−j.
The fugacity of components 1 and 2 within the gaseous

binary mixture is
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For a pure gaseous component, eqs 5 and 7 become:
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By combining eqs 7 and 8, one obtains:
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When dealing with liquid solutions, the ratio
̃f T p

f T p

x( , , )

( , )
i,liq

pure i,liq

is

usually called activity of component i (in the liquid phase).

Symmetrically, the ratio
̃f T p

f T p

y( , , )

( , )
i,gas

pure i,gas

could be named activity of

species i in the gas phase, even though such a practice is rather
unusual.

Remark: it can be also noted that the term
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the role of an activity coefficient of i (activity divided by mole
fraction) denoted γi. Therefore, the expressions of the molar
excess Gibbs energy, molar excess entropy, and molar excess
enthalpy of the gas phase are
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This derivation highlights that the virial equation of state is
capable of predicting both entropic effects (reflected by the
term sgas phase

E ) as well as enthalpic effects (reflected by the term
hgas phase
E ). It can be observed that the temperature-dependent
δ12 function plays a central role in the reproduction of such
effects.
Component 1 will behave as in a gas ideal-solution provided

its activity coefficient, i.e., the term
δ· ·⎜ ⎟⎛

⎝
⎞
⎠exp

p y

RT
12 2

2

, is unity. In

other words, one out of these three conditions needs to be
fulfilled:

• Case 1: the mole fraction of component 2 tends to zero
or equivalently, the mole fraction of 1 tends to 1.

• Case 2: the interaction parameter δ12 is zero.
• Case 3: the pressure p tends to zero.

Analyses of these three occurrences are proposed in the next
sections and supported by Figure 2.
It could be also claimed that the activity coefficient becomes

unity at infinite temperature. This instance is addressed below,
through a final remark before conclusion.
On the Ideal Behavior of Nearly-Pure Components in Real
Fluids

As a well-known result of classical thermodynamics, when the
mole fraction xi of a given mixed component i approaches one,
the component adopts a nearly-ideal behavior, even if the
mixture is highly non-ideal. In terms of chemical potential and
fugacity, one has:
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This law can be simply related to the structural definition of
an ideal solution: when xi → 1, each molecule i of a nonideal

mixture is mainly surrounded by neighbor molecules of the
same type (molecules i). Even if molecules j are such that the
cross-interaction energy i−j is not the average of the self-
interaction energies i−i and j−j, molecules j are so rare that
interaction energies i−i are preponderant and govern the
expression of the chemical potential of i. Note however that
molecules j, the mole fraction of which tends to zero, are
essentially surrounded by molecules i and do not exhibit an
ideal behavior.
As expected, Case 1 highlights that a nearly-pure component

within a real-gas mixture behaves as in an gas-ideal solution (see
Figure 2 for a graphical illustration of this instance):
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For a mixture made up of component 2 infinitely diluted in
component 1, eq 9 highlights a nonideal behavior:
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Derivation of a Gas Ideal-Solution and a Perfect-Gas
Mixture from a Real-Gas Mixture

Contrary to Case 1, Case 2 makes it possible to derive a general
definition of a gas ideal-solution. Indeed, according to eq 6:

δ = ⇔ =
+

B
B B

0
212 12

11 22
(13)

A gas ideal-solution is thus obtained for any value of T, p, and
y, as long as the mutual virial coefficient is equal to the average

Figure 2. Graphical illustrations of the relationships between gas ideal-
solutions, perfect gases and real-gas solutions.
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of the second virial coefficients of the pure components. This
conclusion fits perfectly the rigorous structural definition of an
ideal solution. In such a case, the virial equation for gas-ideal
solutions would have the following expression:

= +

= +
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B T B T y B T y

y y
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It is thus observed that the choice of a linear mixing rule for
Bmixt induces a gas ideal-solution behavior (see Figure 2 for a
graphical illustration of this instance).
From this general definition of a gas ideal-solution modeled

with the truncated virial equation of state, the case of the
perfect-gas mixture can be simply introduced by removing the
pair interactions between like molecules B11 = B22 = 0. The pair
interaction between unlike molecules is thus also null:

= =+B 0B B
12 2

11 22 . Eventually, it is found that a perfect-gas

mixture is a particular instance of the much more general
concept of gas ideal-solution.

Derivation of a Perfect-Gas Mixture from a Real-Gas
Mixture

Case 3 simply illustrates that any real fluid tends to behave as a
perfect gas at low-enough pressures (see Figure 2 for a
graphical illustration of this instance; note that the real fluid
under low pressure is named quasi-perfect gas). This result was
expected as it is well-known that in any real fluid at low
pressure and fixed temperature, molecules are dispersed in an
infinite molar volume so that molecular interactions vanish and
consequently, a perfect gas, which is a particular case of gas
ideal-solution, is obtained. Thus, Case 3 makes it possible to
generate an ideal behavior of the mixture on a limited pressure
range (very low pressures) and consequently, cannot be used to
define the gas ideal-solution concept which is supposed to hold
at any pressure.

Remark on Real Solutions at High Temperature

The temperature-dependence of the second virial coefficient is
well described in the literature. At sufficiently-low temperatures,
the second virial coefficient is negative. As temperature
increases, the second virial coefficient increases and becomes
zero at the so-called Boyle temperature TB. In such a case,
“attractive and repulsive forces between pairs of molecules are
approximately balanced”.19 At temperatures above TB, the
second virial coefficient is positive and increases slowly. As a
noticeable feature, experimental evidence has been given for
some fluids that the second virial coefficient can reach a
maximum (the corresponding temperature is named inversion
temperature).20 At high temperature, the second virial
coefficient approaches zero as described by Beattie and
Stockmayer: “At the Boyle temperature and according to
theory, at infinite temperature [the second virial coefficient]
limit is zero”.21 As a consequence and following eq 6, it can be
claimed that

δ= +∞ = = +∞ = = +∞ = ⇒ =B T B T B T( ) ( ) ( ) 0 011 22 12 12

(15)

At infinite temperature, a gas mixture obeying the truncated
virial model exhibits thus the behavior of a perfect-gas mixture
(since all the second virial coefficients approach zero) and
consequently, of an ideal solution (since δ12 = 0).

■ CONCLUSION
The idea to write the present article had emerged one year ago,
after having asked our students, during the final examination of
the chemical-engineering thermodynamics class, to discuss the
differences and similarities between a gas ideal-solution and a
perfect-gas mixture. Nearly none of them were able to identify
the connections between these concepts. A pedagogical way is
proposed in this article to clarify these issues. The truncated
virial equation of state has been used to generate real-gas
mixture properties. It has been shown that this approach makes
it possible to intuitively develop the general concept of gas
ideal-solution encompassing the particular case of perfect-gas
mixtures.
It has been highlighted that a perfect-gas mixture is

necessarily a gas ideal-solution whereas a gas ideal-solution is
not necessarily a perfect-gas mixture. Consequently, it is
proposed to definitively call perfect gas a gas obeying the law:
pVm = RT (instead of ideal gas).
The relationships between real-gas (modeled using the virial

equation of state), gas ideal-solution (modeled using the virial
equation of state by assuming that the cross-second virial
coefficients are related to the pure-component second virial
coefficients through: Bij = 1/2(Bii + Bjj)), and perfect-gas
behaviors are summed up in Figure 2.
Such an approach was successfully implemented at the

ENSIC School (chemical-engineering department of the
University of Lorraine), making it possible to avoid confusion
with the concepts of real solution, ideal solution, and perfect
gases and to understand how these concepts are all interrelated.
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