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ABSTRACT: A visual regression analysis using the least absolutes method (LAB) was developed, utilizing an interactive
approach of visually minimizing the sum of the absolute deviations (SAB) using a bar graph in Excel; the results agree very well
with those obtained from nonvisual LAB using a numerical Solver in Excel. These LAB results were compared with those from
the popular least-squares method (LSQ), which minimizes the sum of the squares of the deviations (SSQ), and also with results
from the median method (MED). LAB yielded similar results as LSQ for a data set with relatively smaller average deviations
(<5%) as well as for data sets with relatively larger average deviations (>10%). However, for data sets with an outlier, the LAB
method yielded significantly different results than LSQ. The LAB results, in all three cases, agree more closely with the results
from MED of Theil and Siegel, which handles outliers better than the LSQ approach. The LAB approach (visual or numerical) is
as simple and easy to implement in a spreadsheet as LSQ. The visual LAB approach may be practiced for analyzing data that
requires regression in any college laboratory courses, especially when the data contain suspected outliers, because it is
pedagogically more effective for visual learners than the numerical LAB with Solver.
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■ BACKGROUND

Despite its weakness of not being robust or resistant, the least-
squares method (LSQ) has been one of the most commonly
practiced statistical methods for over a century. Numerous
books (refs 1−5 to name a few) and articles have been
published on the subject; this Journal alone has published over
four dozen articles with the subject in the title, expounding the
method and its applications (refs 6−10 to name a few among
many). When all fields in both the natural and social sciences
are combined, the number of publications is enormous. The
popularity and dominance of LSQ is due largely to its effective
handling of regression analysis. Its well-defined analytical
solution for the regression parameters and variance analysis,
guaranteeing minimum variance estimates of the parameters,
has resulted in handy prepackaged formulas for scientific
calculators and spreadsheet software programs for computers.
The weakness of the LSQ arises from the assumption of normal
distribution of errors in data, which also implies that the data
contains enough number of measurements (n), preferable n >
15; in many instances, however, this is hardly the case, n being
less than 10 in many lab experiments. Thus, LSQ is not
statistically robust (meaning it is “insensitive to departure from
assumptions surrounding an underlying probabilistic model”),11

and it is not resistant (meaning it is “too sensitive to localized
misbehavior in data”).12 Namely, it has the drawback of
exaggerating the effects of data with larger deviations compared
with data with smaller deviations. The problem becomes
serious with data containing an outlier,12 a discordant datum, in
which predicted values are far from observed values and lie
outside the general trend of the data set. On the other hand, the
least absolute deviations (LAB) method is less sensitive to
external errors13 and is more resistant to outliers than LSQ.14

LAB gives equal emphasis to all observations, in contrast to
LSQ, which gives more weight to large residuals by squaring
them. By minimizing sums of absolute values of the residuals
rather than the sums of square, the effect of outliers on the
coefficient estimate diminishes in the LAB approach. Despite its
intrinsic strength, the LAB approach has been under the
shadow of LSQ for centuries, even though LAB precedes LSQ
by half a century.15 Boscovich first introduced LAB in his work
on the shape of Earth in 1757,16 and Laplace applied the
method to astronomy in 1793.17 LSQ regression was not
developed until later in the early 19th century by Legendre,
who predicted the orbits of comets in 1805,18 and by Gauss,
who published the methods in 1809.19 Moreover, LAB20−25 is
much more needed in the social sciences and economics in
particular,24 where heavy scattering in the data is much more
common, due to hidden or unknown variables, than in the
natural sciences, in which controlled experiments are more
easily performed, with most, if not all, of variables well-defined.
For a common linear system with two parameters, the

functions that need to be minimized in each method are the
sum of the absolute deviations (SAB) for LAB and the sum of
the squares of the deviations (SSQ) for LSQ:

∑= | − + |Y b mXSAB ( )i i (1)

∑= − +Y b mXSSQ ( ( ))i i
2

(2)

where m is the slope and b is the y-intercept.
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The difficulties associated with handling the absolute
function, which is not differentiable, hindered the development
of LAB in its earlier days. Namely, the absolute function in eq 1
is discontinuous, and its derivative is not defined analytically in
a single closed form, whereas the function in eq 2 for LSQ is
continuous with a well-defined derivative. It is the first
derivative that must be set to zero in solving problems of
minimization of eqs 1 and 2. This gave the LSQ approach a
critical and decisive advantage, leading to its earlier and rapid
development in the 19th century and resulting in its current
overwhelming dominance over LAB, contributing to its
popularity, which appears to be excessive compared with the
use of LAB.
Nevertheless, the situation is different nowadays. Namely,

new advances in computational technology and statistics since
the late 20th century have paved the way for the gradual
development of new methods that can minimize the least
absolute function numerically.21−26 These new various
numerical approaches utilize iterative algorithms for minimizing
LAB and are, in general, more involved and computationally
demanding than the ordinary LSQ approach. However, with
the development of more efficient optimization programs25 in
recent years, LAB has begun to emerge as a practical tool. LAB
minimization is now possible with numerical solver programs,
and some are packaged in spreadsheet software, such as the
numerical Solver in Excel7,26,27 that is available as an Add-In.
The numerical Solver in Excel,7,27 in particular, uses algorithms
based on the simplex (for linear system) and generalized
reduced gradient (for nonlinear system) methods26 for
optimization. Add-Ins of Excel become increasingly popular
tools for data analysis, thus being utilized effectively in many
places including some laboratory textbooks.28 In this report, we
present results from visual LAB alongside those from numerical

LAB using Excel Solver, namely, presenting results from both
low (i.e., visual) and high (i.e., using Solver) ends of the
numerical approaches.
Both LSQ and LAB methods belong to M (maximum

likelihood) statistical estimators,12 which rely on minimization
of deviations and are not robust, although LAB is more
resistant than LSQ.12 Thus, it is not surprising to observe the
advent of robust methods, which are not numerical or
noniterative approaches, making them computationally less
expensive. These are L statistical estimators, which are based on
linear combinations of some form of order statistics, such as the
median.12,29 Theil explored such a median (MED) approach29

using the median values, in which slopes were collected
between all possible pairs of points to find the median of all of
the n(n − 1)/2 slopes:29,30

= − − ≠ ≤ < ≤m y y x x x x i j n( )/( ) where , 1ij j i j i i j

(3)

Then the median slope is

=m mmed{ }ijT (4)

The median intercept is found from the median of intercepts
found from the median slopes

= −b y m xmed{ }i iT T (5)

Robustness can be given in terms of breakdown bound (%),
which is the maximum number (in %) of data that can be
replaced by arbitrary data with the fit parameters unaffected.
While the M estimators (LSQ and LAB) have a 0% breakdown
bound, Theil’s L estimator has a value of 29%.12

In order to enhance robustness further, the median values
were treated further by Siegel;31 namely, the median of all

Table 1. Comparisons of Results from LSQ, LAB, and MED Methods

(A) Data from Beer’s Law Lab - Actual Student’s Data

Methods Procedure Slope ± SD (m ± sm) Intercept ± SD (b ± sb) SSQ Minimized SAB Minimized % SAB

LSQ Excel 4.027 ± 0.099 0.008 ± 0.011 0.001154 0.0748 3.46
Excel 4.08 ± 0.07 Fixed at 0 0.00131 0.0710 3.28
Visual 4.03 ± 0.10 0.008 ± 0.01 0.001154 0.0748 3.46

LAB Solver 4.133 ± 0.112 0.000 ± 0.013 0.00148 0.0673 3.11
Visual 4.12 ± 0.11 0.00 ± 0.01 0.00147 0.0673 3.11

MED Theil 4.040 ± 0.10 0.007 ± 0.011 0.001158 0.0750 3.42
Siegel 4.159 ± 0.12 −0.002 ± 0.01 0.001689 0.0730 3.38

(B) Synthetic Data for Beer’s Law for Pronounced Scattering

Methods Procedure Slope ± SD (m ± sm) Intercept ± SD (b ± sb) SSQ Minimized SAB Minimized % SAB

LSQ Excel 0.6259 ± 0.0563 0.0005 ± 0.0253 0.00601 0.152 11.5
Visual 0.626 ± 0.078 0.001 ± 0.039 0.00601 0.152 11.5

LAB Solver 0.5988 ± 0.0601 0.0008 ± 0.0270 0.00694 0.137 10.5
Visual 0.599 ± 0.060 0.000 ± 0.027 0.00694 0.137 10.5

MED Theil 0.6043 0.0587 −0.0021 ± 0.0264 0.00685 0.139 10.6
Siegel 0.6015 ± 0.0602 −0.0013 ± 0.0290 0.00686 0.138 10.6

(C) Data from Massart et al.36 with an Outlier

Methods Procedure Slope ± SD (m ± sm) Intercept ± SD (b ± sb) SSQ Minimized SAB Minimized % SAB

LSQ Excel 1.691 ± 0.423 −0.895 ± 1.281 12.5 7.27 36.4
Visual 1.70 ± 0.42 −0.92 ± 1.28 12.5 7.50 37.5

w/o outlier Excel 0.960 ± 0.004 0.080 ± 0.094 0.04 0.4 4.0
LAB Solver 1.032 ± 0.580 0.000 ± 1.756 23.4 5.31 26.6

Visual 1.03 ± 0.58 0.00 ± 1.76 23.5 5.31 26.6
MED Theil 1.033 ± 0.58 0.001 ± 1.76 23.4 5.31 26.6

Siegel 1.017 ± 0.58 0.025 ± 1.77 23.8 5.34 26.7
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slopes for a given point is taken, and the median of these
medians is taken as the slope;

=m wmed{med{ }}ks (6)

where, wk is the median of all the slopes from a point k.
Then, a new intercept is found with this ms in similar fashion

as Theil,

= −b y m xmed{ }i is s (7)

The details of algorithm for evaluating ms and bs is given in ref
12.
This Siegel’s procedure of the repeated median method has a

50% breakdown bound, making it the most robust. Although
LAB (visual or numerical) is not as robust as MED, it is
resistant to outliers like MED, as shown in the Results section.
In this report, we take both approaches of LAB, that is, visual

and numerical (using an algorithm with Excel Solver); at the
same time, we also calculated the two parameters of slope (m)
and intercept (b) using the MED methods (both Theil’s and
Siegel’s), utilizing the spreadsheet template of Glasser,12 in
order to check how well the four different methods agree. We
have already presented this type of visual approach in this
journal and others10 based on the minimization of the least-
squares sum, and the visual part of the present work is an
extension and sequel of the previous work.10 This visual
approach, based on iterations of trial-and-error, may be referred
to as an old-fashioned, yet computer-aided, curve-fitting, or
scientif ic “eye-balling”, due to the visible displays of the sum of

the deviations, absolute or squared, in a bar graph. Interested
readers may refer to the Online Supporting Information10 for
detailed examples of visual LSQ in Excel and the supporting
documents associated with it; the work is largely based on the
interactive spreadsheet approach of Coleman.32

■ CALCULATIONS OF STANDARD DEVIATIONS IN
THE SLOPE AND INTERCEPT

The standard deviations associated with the two parameters (sm
and sb) of slope (m) and intercept (b) are calculated from the
general formulas for standard deviation based on the variance of
the fit (sy

2). These formulas and examples can be found in
several references,5b,33,34 and the formulas are represented here
for clarity:

=
∑ − +

−
s
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N
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( 2)y
i i2

2

(8)

=
∑

∑ − ∑
s

s x

N x x( )b
y i

i i

2
2 2

2 2
(9)

=
∑ − ∑

s
Ns

N x x( )m
y

i i

2
2

2 2
(10)

All of the values of the parameters found by the methods of
LSQ, LAB, and MED and the standard deviations associated
are summarized in Table 1.

Figure 1. Beer’s Law plots with less scattering: minimizing average of abs. dev. Click on the Spinner Buttons to lower the average of the absolute
deviations.
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■ PROCEDURES OF THE VISUAL LEAST ABSOLUTES
METHOD (VLAB)

The VLAB is analogous to its visual least squares method
(VLSQ) counterpart.10 The values for the least-squares and
related quantities were replaced with those from the least
absolutes counterparts. Please refer to the Excel Template
attached in an Appendix.
Step I. Prepare a table of X−Y data in an Excel worksheet and

prepare another column to generate theoretical Y values (Ycalc)
with any reasonable arbitrary values for slope (m) and intercept
(b), which are estimated to start with.
Step II. Calculate the absolute deviations and their average in

an additional column. Plot the experimental Y and theoretical Y
values in an Excel graph (chart).
Step III. Prepare another graph in a separate chart to

represent each of the absolute deviations and their sum or
average (the last bar) in a bar graph form.
Step IV. Prepare two spinner bars in order to manipulate the

slope and intercept for Ycalc. Click on the spinner bar for slope
(or intercept) until the height representing the average of the
absolute deviations no longer decreases. The first spinner
button is to control the slope (m), and the second spinner
button is to control the y-intercept (b). Then switch to the
other spinner bar to control the intercept (or the slope) and to
lower the last bar again. One may alternate back and forth
between the slope spinner and intercept spinner bars and
repeat the steps until the average is minimized. Lowering of the
average bar is easily visible in the beginning, but is often barely
recognizable near the end of the process. At this stage, the y-
scale in the bar graph may be adjusted for an expansion to make

it more visible, or the numerical display of the average can be
used to see the changes.

■ DATA AND RESULTS

Beer’s Law Experiment with Less Deviations (<5%)

The calculations, graphs, and results are presented in Figure 1
using data from a Beer’s Law laboratory. The experiment was
taken from “Absorption Spectroscopy and Beer’s Law”.35

Students prepared a set of standard solutions (red) of
Co(NO3)2·6H2O at various concentrations and measured the
absorbance of these solutions at 510 nm with a Spectronic 21
(Milton Roy Co.) instrument. Because this is a simple and well-
defined system, most students obtain good linear plots with
minimal scattering in the data, with a correlation coefficient
typically greater than 0.99. The data presented in Figure 1 are
actual typical data from a student in a freshman laboratory
course (CHEM 1211 Lab) in recent years at Georgia Perimeter
College.
The first two columns at the top of the figure are for the

original X−Y data. The next three columns are to calculate Y
values, deviations, and absolute deviations with any arbitrary
values of m and b: only the final results of the minimization are
displayed. The last bar in the bar graph represents the average
of the absolute deviations (=SAB/6): its numeric value is also
displayed in a cell for clarity. This numeric display is helpful
when the change in the bar height becomes too small to be
visually recognized, particularly near the end of the
minimization. The slope and intercept are incremented or
decremented by 0.001 and 0.001 (or comparable values)
respectively. Since the spinner control for a cell value requires

Figure 2. Beer’s Law plots with larger scattering: minimizing average of abs. dev. Click on the Spinner Buttons to lower the average of the absolute
deviations.
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an integer increment, the base value is scaled with scaling
factors of 0.01 and 0.001 for a fractional increment. For
example,

= ×

= ×
=

m (the base value) (the scaling factor)

387 0.01
3.87 (11)

= − ×

= − ×

=

b (the base value 50) (the scaling factor)

(57 50) 0.001

0.007 (12)

For the intercept, however, 50 must be subtracted from the
base value in order to allow negative values for this parameter.
When the minimization was finally accomplished, it yielded a
slope of 4.13 and an intercept of 0.001 with an average
deviation of 0.0112 (in a cell of column 6 and row 9) in Figure
1, values that are identical to those obtained with numerical
LAB with Solver.
These results are compared with those using LSQ (both

from the analytical formula and visual regression) and the MED
methods of Theil and Siegel and are summarized in Table 1A
for an easy comparison. Columns for SSQ, SAB, and % SAB (=
SAB/∑Yi × 100) are also given as a criterion for a fit. All six
methods yielded similar values with an average slope of 4.08
and an intercept very close to zero. It should noted that the

present LAB methods yielded the lowest SAB of 0.06725 and
3.11% SAB, and it agrees well with the results from the Siegel
MED method, which yielded the highest slope of 4.159. The
LSQ slope (4.03) is closer to Theil’s MED slope (4.04), while
the LAB slope (4.13) is closer to Siegel’s MED slope (4.16).
The LAB slope has 0.73% (=(4.13 − 4.10)/4.13 × 100)
difference from the average of the two MED slopes, 4.10
(=(4.040 + 4.159)/2), while LSQ slope (=4.03) shows 2.4%
difference from the MED slope, which is about 3 times larger
than that of LAB: in this respect, LAB slopes agree better with
MED slopes than LSQ slopes do. It should be noted that the
values of the final (minimized) SSQ and SAB remain nearly the
same for all six methods, except the two LAB, which yielded the
larger SSQ and smallest SAB and % SAB. All six intercepts are
very close to zero, according to Beer’s Law. Uncertainties, the
two standard deviations (sm and sb) associated with the two
parameters, are nearly the same: approximately 0.1 for the slope
and 0.01 for the intercept.

Beer’s Law Data with Larger Scattering with Synthesized
Data

We tested the method for a system with heavy scattering in the
data in order to demonstrate the effects of exaggerating the
deviations with artificial data for the Beer’s Law type plot
(Figure 2). Namely, the average deviation was made to be
larger than 10% of the sum of the yi values; it was less than 5%
in the previous case (Figure 1). The final results are

Figure 3.Minimizing average of absolute deviations for a data set with an outlier. Click on Spinners to minimize the average deviation, the last bar in
the graph.
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summarized in Table 1B for all six methods. The LSQs,
whether analytical or visual, yielded nearly the same results,
with a slope of 0.626, while LAB and MED yielded nearly
identical results of the slope in particular, 0.599 and 0.603
respectively. The LAB slope (=0.599) has about 0.66%
difference from the average of the two MED slopes, 0.603
(=(0.6042 + 0.6015)/2), while LSQ slope (=0.626) shows
3.8% difference from the MED slope, which is about 6 times
larger than 0.66%: this demonstrate s that LAB slopes agree
better with MED slopes than LSQ slopes do. The intercepts are
close to zero for all six approaches. It should be noted that LAB
and MED yielded a much higher value of SSQ, 0.0069, which is
about 12% greater than that of LSQ. However, LAB and MED
yielded a much lower value for SAB (ca. 0.138), while LSQ
yielded a value of 0.151, which is 10% higher. Basically LAB
agrees well with both MED methods; in terms of % SAB, both
LAB yielded a result of 10.5%, while both MED methods
yielded a result of 10.6%. As far as the uncertainties are
concerned, all six methods yielded approximately same values,
namely about 0.06 for sm and about 0.03 for sb.

A Case with an Outlier for Which LAB Is More Reliable

As the final and most noted case with an outlier, we tested LAB
with data that contains an outlier from Massart,36 which has
been well analyzed with the MED methods by Glasser.12 The
visual work is given in Figure 3, and the results are summarized
in Table 1 along with others.
The visual LSQ method yielded very similar results to those

from the analytical LSQ with a slope of 1.7 and intercept of
−0.9. These two values from LSQ are, however, very different
from the slopes from LAB and MED; the LAB slope (=1.031)
has only 0.59% difference from the average of the two MED
slopes, 1.025 (=(1.033 + 1.017)/2), while the LSQ slope
(=1.69) shows about 65% difference from the MED slope. The
intercepts from both LAB and MED are very close to zero (an
average of 0.02), which is again very different than that of LSQs
(−0.9). SAB in LAB/MED improved to 5.31 from 7.4 (an
average for LSQ). Improvement in % SAB is about 10%, from
38% (LSQ) to 27% (LAB). Because of the outstanding outlier
(the last point), the standard deviations of the parameters
became very large regardless of the methods employed. LAB/
MED, however, yielded larger errors than LSQ, namely, about
30% larger in sm and 40% larger in sb.
It is interesting to note that the results of LSQ are closer to

the results from LAB/MED with the outlier excluded (5th row
from the bottom of the Table) than those with the outlier (7th
or 6th row from the bottom). Thus, in this case, one may
comfortably discard the outlier, if LSQ must be used, because
errors in the parameters were greatly reduced; for the slope in
particular, a relative difference from the MED slope became
about 6% (=(1.026−0.960)/1.025 × 100) from the previous
value of 65%. However, in real situations it is difficult to spot or
ignore an outlier regardless of the scattering level; therefore
LAB is preferable to LSQ in such a case. It is worth noting that
the intercept can be altered without altering the least absolutes
sum (SAB), because the standard deviation of the intercept is
so large (1.76), deviating greatly from zero.
In general, regardless of the scattering level, whether it is case

A (lower scatter) or B (higher scatter), LAB slopes agree with
MED slopes within 1%, while LSQ slope agrees within 2−4%
depending upon the average deviations. This work proves that
the LAB and MED methods yield nearly the same results
agreeing well with each other, and this implies that the MED

methods of Theil and Siegel are a way to result in a
minimization of the SAB, not SSQ, after all.

■ IMPLEMENTATION OF THE VISUAL LAB METHOD
IN LABORATORY COURSES

The visual LAB will be helpful in any college courses, including
chemistry and physics, where analysis of experimental data
requires regression or curve-fitting. Laboratory curricula of
general, analytical, or physical chemistry include many such
experiments as the common spectrophotometric experiment
(Beer’s Law lab). The analytical formula and the derivations for
the slope (m) and y-intercept (b) from LSQ are commonly
treated as a black box without being disclosed to beginning
students at lower-level courses; thus the laboratory work and
the method could fade away without much retention. In the
visual method, however, students actually, see and feel the
process of minimizing, and the impression will be better
retained, particularly for the visual learners.37 The Procedure
(previous section) can be included in a lab manual for students
to follow through it step-by-step working it out by themselves,
or an Excel template (of Figure 1) can be distributed to
students who are less familiar with the Excel. An Excel
Template is appended for the purpose.

■ CONCLUSION
Agreement between the interactive visual and numeric least
absolutes method (LAB) is excellent, producing nearly the
same results as the median methods (MED) of Theil and
Siegel, and is just as easy to implement in the spreadsheet of
Excel as is LSQ. As a pedagogical tool, visual LAB is as effective
as LSQ since it allows students to actually view the process of
regression in terms of minimizing the sum of the absolute
deviations in fitting an equation to the data. In the past, we, as
educators, scientists, and engineers, have depended mostly on
the least-squares method. The time has come to open the door
for the Least Absolutes Method, which can handle a system
with suspected outliers in a more solid fashion.
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