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installation high-resolution measured data. This article examines the operation of hybrid solar/wind microgrids
using measured data from a 5 kW system inMuhuru Bay, Kenya. The systemwas outfitted with data acquisition
and broadcast equipment that samples battery voltage, current from the solar panels and wind turbines and
other quantities on a minutely basis. Considering 14 months of data, this article provides statistical and time-
series analyses and interpretation of hybrid solar/wind microgrid operation. The microgrid's energy supply and
efficiency are analyzed and data-driven system diagnostic methods are presented. It is shown how microgrid
controller set-points influence the prioritization of energy sources, favoring wind over solar energy, and that
the long-term efficiency of the microgrid is 67%. Perspectives on how operational data can be used to improve
utilization and prevent pre-mature failure are provided.
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Introduction

The expansion of centralized grids to serve the 1.1 billion peoplewith-
out electricity is fraught with challenges (International Energy Agency,
2012; Nerini et al., 2014; Alliance for Rural Electrification; Mahapatra
and Dasappa, 2012). Low load density and an often impoverished cus-
tomer basemake it difficult to economically justify the extension of distri-
butions lines, which may cost as much as US$20,000 (Alliance for Rural
Electrification) per kilometer to install. Constructing and maintaining
the lines across rugged terrain coupled with a lack of supporting infra-
structure such as roadways add further barriers. In many countries, com-
munities more than 20 km from the grid are not actively considered for
electrification by grid extension (Mahapatra andDasappa, 2012; Japan In-
ternational Cooperation Agency, 2006; Barfour, 2014). These communi-
ties must look to off-grid electrical systems to meet their needs.

The prospects for off-grid systems are promising due to rapidly de-
creasing component prices and innovative business models. Solar panel
prices have plummeted from US$3.17/Wp in 2003 to US$1.15/Wp in
2012 (U.S. Energy Information Administration, 2013). LED bulbs, which
are approximately five times more efficient than incandescent lights
(U.S. Energy Information Administration, 2014), have also dramatically
reduced in price, decreasing from US$66/bulb in 2010 to US$10/bulb in
2014 (U.S. Energy Information Administration, 2014), making the transi-
tion from kerosene lamps to electric lighting within reach.
ed by Elsevier Inc. All rights reserve
Stand-alone electrical systems serving customers via a local distribu-
tion network – hereafter referred to as simply “microgrids” – can supply
higher-tiered electricity access when compared with solar home systems
or portable battery kits (Sustainable Energy for All, 2015). Research has
shown that microgrids, if designed properly, are economically superior
to grid extension in many scenarios (Nerini et al., 2014; Alliance for
Rural Electrification; Mahapatra and Dasappa, 2012).

Microgrids exist in a variety of architectures, often integrating genera-
tion, load, energy storage and protection and control systems. Hybrid
microgrids combine two or more energy sources such as photovoltaic
(PV) panels, combustion generators, wind turbines and hydro turbines
(Nema et al., 2009; Domenech et al., 2014). The most notable advantage
of hybrid systems over single-source microgrids is increased security of
supply due to the diversification of the energy sources (Nerini et al.,
2014; Nema et al., 2009; Domenech et al., 2014). Hybrid solar/wind sys-
tems are increasingly being used (Domenech et al., 2014; Nema et al.,
2009). They offer the additional benefits of having zero fuel costs and
being emission free. However, the operation of hybrid solar/wind
microgrids is a complex, as the stochastic load must be matched with
the also stochastic weather-driven energy sources (Domenech et al.,
2014).

Existing research on the operation and design of hybrid microgrids
in general has relied on computer-aided simulation (Alliance for Rural
Electrification; Leger, 2015; Ding and Buckeridge, 2000; Bae and
Kwasinski, 2012; Valenciaga and Puleston, 2005; Fung et al., 2002). Sev-
eral innovative control schemes have also been proposed. Use of a mul-
tiple input DC–DC converter to manage the sources and loads is used in
Bae and Kwasinski (2012). A supervisory control methodology is
d.
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developed in Valenciaga and Puleston (2005). Fuzzy control methods
are proposed in Chedid et al. and Yang et al. (2014) and neural
network-based control is used in Lin et al. (2011).

Although these methods are innovative, they are not yet commer-
cialized and therefore their use to the practitioner community is limited.
Microgrid implementers must use commercially available off-the-shelf
products for their immediate needs, yet there is a dearth of literature
that analyzes the operation of these in-the-ground systems using mea-
sured – not simulated – data. This is unfortunate because operational
data can be a powerful tool in validating systemperformance, maximiz-
ing energy production and guarding against premature failure, which
haunts many microgrid installations (Tamir et al., 2015; Louie et al.,
2014).

Some, but few, analyses that use measured data are available. Data
from several off-grid PV installations are considered in Díaz et al.
(2011), but these data have onlymonthly resolution and do not include
operational quantities such as voltages and currents. In Tamir et al.
(2015), data are provided from post-installation assessment reports
but, again, do not include operational data. Higher resolution (10-mi-
nutely) operational data are reported inWeber et al. (2014) for a hydro-
electric microgrid system. However, Weber et al. (2014)focus
exclusively on the load profile of a microgrid. Several researchers have
called out the need and value of additional operational data in the re-
search community (Díaz et al., 2011; Cross and Gaunt, 2003; Howells
et al., 2002).

This article begins to fill the gap in the literature. Recent advances in
cellular network connectivity, cloud-based solutions and measurement
hardware have made it possible to obtain near-real time operational
data from microgrids (SteamaCo, 2015; PowerHive, 2015; Morningstar
Corporation, 2014). Rather than relying on simulation, this paper exam-
ines 14 months of data from a 5 kW hybrid solar/wind microgrid in
Muhuru Bay, Kenya. The microgrid is outfitted with a data acquisition
system that samples battery voltage and branch currents every minute
and broadcasts them to a remote server in near-real time. Based on the
measured data, this article provides statistical and time-series analyses
and interpretation of hybrid solar/wind microgrid operation. The
microgrid's energy supply and efficiency are analyzed and data-driven
system diagnostic methods are presented.

It is shown how the analyses in this paper were used to maximize
the benefit of the microgrid in Muhuru Bay and to prevent premature
failure. Although the analyses focus on a specific installation, several of
the results are generalizable to hybrid solar/wind microgrids and will
be noted as such. For concision, hereafter “hybridmicrogrid” specifically
refers to solar/wind microgrids.

The remainder of this paper is arranged as follows. The Data and
methodology section provides technical information about the
microgrid and describes the methodology used to collect and process
the data considered in this article. Microgrid control aspects are
discussed in the Hybrid microgrid control section. Statistical analyses
and time-series interpretation are performed in the Statistical analysis
and Time-series analyses sections, respectively. The Microgrid
diagnostics section describes a simple diagnostic method for assessing
microgrid performance. The efficiency of the microgrid is analyzed in
the Efficiency analysis section. Conclusions and future outlook are pro-
vided in the Conclusion and future outloook section.

Data and methodology

Microgrid architecture

The data examined in this article are from a hybrid microgrid in
Muhuru Bay, Kenya. Muhuru Bay is situated on Lake Victoria, near the
borderwith Tanzania. The systemwas installed in August 2014 and sup-
plies electricity to the home of a school headmaster and a kiosk where
community members can recharge mobile phones, rent portable bat-
tery kits and purchase refrigerated beverages and ice. Additional
background information about the microgrid, including its community
development goals, is found in Van Acker et al. (2014) and Louie et al.
(2015).

A high-level schematic of the microgrid architecture is provided
in Fig. 1. The architecture and components are typical of solar/wind
hybrid microgrids. Wind turbines and PV panels supply power to
the system. Two permanent magnet synchronous generator wind
turbines harness the strong onshore winds from Lake Victoria. The
wind turbines are each rated at 1000 W. The wind turbines output
three-phase AC, which is rectified to DC before connecting to the
DC bus.

There are twelve 235W poly-crystalline photovoltaic (PV) panels
for a total solar capacity of 2.82 kW. Due to spatial limitations, the PV
panels are divided into two sets of six. The natural output of PV
panels is DC, so no rectifier is required. Controllers manage the
charging of the battery by the PV panels. The controllers play an im-
portant and often overlooked role in the operation of the system,
which is discussed in detail in the Microgrid diagnostics section. In-
tegrated into each controller is a maximum power point tracker
(MPPT). MPPTs increase the power production of PV panels by
decoupling their operating voltage from the voltage of the DC bus
(Enslin, 1990).

The DC bus voltage is established by the series connection of eight
6 V flooded lead-acid batteries for a nominal voltage of 48 V. Each bat-
tery is rated at 400 Ah for a total capacity of 19.2 kWh. Although there
are multiple batteries, hereafter they will be referred to as a single
unit without loss of specificity.

Also connected to the DC bus is a diversion load controller, which is
used to protect the battery from over-voltage conditions. When an
over-voltage condition is sensed, a diversion load is connected to the
DC bus, thereby reducing the current into the battery and thus lowering
the battery's terminal voltage. The diversion load itself is a high-power
resistor. It is important to note that the two PV controllers and the diver-
sion load controller are operated autonomously—there are no commu-
nication channels between them. Rather, their coordination is
achieved solely on the set-points programmed during their installation.
This is the reality for many hybrid microgrid systems.

Finally, a single-phase 3000 VA inverter is used to convert DC to AC,
which is output to the loads in the house and kiosk. The output voltage
is nominally 230 VAC at 50 Hz.

Measurement framework

A data acquisition and broadcast system was integrated into the
microgrid. The systemmeasures: total PV current IPV, total wind turbine
current IWT, diversion load current IDL, battery terminal voltage VB, in-
verter RMS current IAC, inverter RMS voltage VAC, and inverter power
factorψ. Inverter output frequency is alsomeasured but it is not relevant
in this article.

The battery current IB is not directly measured, but it can be com-
puted through the application of Kirchhoff's current law, once all the
currents in the branches connected to the DC bus are known. The
current into the inverter from the DC bus IDC is also not measured,
but it can be reasonably estimated from the measured inverter out-
put quantities as follows. First, the AC power output of the inverter
PAC is computed:

PAC ¼ VACIACψ: ð1Þ

The input power of the inverter PDC is then estimated from:

PDC ¼ PAC

η PACð Þ ð2Þ

where η(⋅) is the efficiency of the inverter,which is dependent on theAC
power output. The assumed efficiency curve of the inverter is provided



Fig. 1. Schematic of the hybrid microgrid system in Muhuru Bay, Kenya.
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in Fig. 2 (Victron). Lastly, the inverter DC input current is computed
as:

IDC ¼ PDC

VB
: ð3Þ

It must be noted that there are losses associated with all of the con-
trollers. Each controller consumes approximately 3 W of power as re-
ported by the manufacturer (Morningstar Corporation, 2014). For
simplicity, and without appreciable loss of accuracy, it is assumed that
the current into each controller is equal to that out of the controller.

The battery current is computed from Kirchhoff's current law:

IB ¼ IWT þ IPV � IDL � IDC : ð4Þ

Note that following the formulation in (4), the battery current is pos-
itive when charging and negative when discharging.

It is sometimes useful to analyze the performance of the system
using power rather current, for example in efficiency calculations. This
is done by simply multiplying the branch currents by the DC bus volt-
age. The bus voltage is assumed to be equal to the battery voltage,
which is reasonable due to the low-resistance connection between the
bus and the battery. This formulation ignores losses in the wires
connecting the equipment, which in practice are negligible.
Power Output (W)
0 500 1000 1500 2000 2500 3000

E
ff

ic
ie

nc
y 

(%
)

0

20

40

60

80

100

Fig. 2. Assumed efficiency curve of the inverter.
Data acquisition system

An overview of the data acquisition system is shown in Fig. 3. The
system nominally acquires the data once per minute and transmits
them via a General Packet Radio Service (GPRS) network to a remote
server, where the data are archived. The measured quantities are
input into the data acquisition system through two analog channels
and oneModbus input. The inverter output voltage, current, power fac-
tor and frequency use the Modbus input (The Modbus Organization,
2012). The remaining four signals – battery voltage, wind turbine cur-
rent, solar panel current and diversion load current – are sent to the
data acquisition system using time-division multiplexing (Lathi and
Ding, 2009).

Time-divisionmultiplexing allows two signals (A and B) to share the
same channel. Explained simply, signals A and B take turns being sent
through an analog channel so that during one minute signal A is sent,
and during the next minute signal B is sent. The disadvantage of this
scheme is that the effective sampling rate of each multiplexed signal is
decreased to two minutes and that not all values are sampled simulta-
neously. Battery voltage and wind turbine current share one channel
whereas the other channel alternates between PV current and diversion
load current.

Data processing

Data irregularities are unavoidable in real-world systems. Over the
course of the 14-month period considered, several data irregularities
occurred. Although the data were sampled once per minute, the data
were not always received by the remote server. The data outages can
be classified as intermittent and prolonged. Intermittent outages are
caused by several factors, including the SIM card in the system
disconnecting from the Kenyan network and “roaming” to the nearby
Tanzanian cellular network. Because of the high sampling rate and rela-
tively slow time constants of the system variables, intermittent outages
are mitigated by linear interpolation and a five-minute moving average
applied to the data set. Prolonged outages occur when the on-site
microgrid manager does not reload the SIM card with credit from the
mobile network provider in a timely manner.

Over time the sample and broadcast period varied, at times exceed-
ing once per minute. This appears to be due to a hardware irregularity
that only affects sampling period, and not the measured values. The



Fig. 3. Schematic of the data acquisition and broadcast system.
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statistical analyses that follow only consider days in which at least 60%
of the anticipated data were received and with outage durations less
than two continuous hours.

Hybrid microgrid control

Hybrid microgrids exhibit a wide range of operational behavior due
to the stochasticity of the energy sources and load, as well as the actions
of the control and protection systems. Of particular interest, and
discussed further in this section, are the PV and diversion load control-
lers. These controllers influence the charging of the battery and the pri-
oritization of the energy sources. Described hereafter is a generic, yet
typical, charge control scheme.

Battery charging

Most lead-acid battery charge controllers use a three-stage charging
approach: bulk, absorption and float, as graphically presented in Fig. 4
(Morningstar Corporation, 2012; Victron, 2015). A fourth “equalization”
stage is occasionally used for maintenance purposes, but is not consid-
ered in this article because it is not part of the routine charging of the
battery. The controller begins charging the battery in the bulk stage.
The controller maximizes the current into the battery, thus charging it
rapidly and raising the battery voltage. The bulk stage ends when the
battery voltage reaches the pre-programmed absorption stage voltage
set-point. The battery is typically 70 to 80% recharged at the conclusion
of the bulk stage.
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Fig. 4. Charging stages of lead-acid batteries.
Once in the absorption stage, the controller regulates the battery
voltage to keep it constant. The battery voltage is a function of the
battery's internal voltage Vint, which reflects its state of charge, the cur-
rent into the battery, IB, and the battery's internal resistance, Rint. Al-
though the relationship between these elements is complex (Alber
and Migliaro, 1994), for the purposes of this discussion, a simple
Thévenin model suffices:

VB ¼ Rint � IB þ Vint : ð5Þ

For a given state of charge, VB can be regulated to a specific value by
controlling IB. However, IB is not controlled directly. Rather, one ormore
of its constituent components in (4) is controlled, for example the PV or
diversion load current. Current control is often achieved using pulse
width modulation (PWM) (Krein, 1997). PWM operation can be con-
ceptually thought of as rapidly connecting and disconnecting the source
at a controlled duty cycle to achieve a desired time-averaged
characteristic.

As the state of charge rises during the absorption stage, the battery
current tends to taper off exponentially. Different algorithms exist for
determining when to end the absorption phase—some manufacturers
use a fixed time, for example four hours, others employ more advanced
algorithms (Morningstar Corporation, 2012; Victron, 2015). Regardless,
at the end of the absorption stage, the battery is full or nearly-full.

The final stage is the float stage. During this stage, the controller re-
duces the battery voltage by decreasing the current into the battery to
near zero. The goal of the float stage is to simply maintain a full charge
on the battery. If the generation sources are unable to supply the load,
for example after sunset, then the battery will discharge until adequate
generation is available, at which point the bulk stage will begin again.
Table 1
Controller Set-Points

Controller Absorption (V) Float (V)

PV 57.6 53.6
Diversion load 58.4 54.8
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Controller interaction

The microgrid in Muhuru Bay features three charge controllers,
whose set-points are provided in Table 1. The set-points of the two PV
controllers are the same and their operation is identical. The diversion
load controller set-points are slightly greater than that of the PV control-
lers. This scheme gives priority to the energy produced by thewind tur-
bines. The reason is as follows. As the battery voltage rises during the
bulk stage, the absorption set-point of the PV controllers is reached
first. The controller adjusts the PV current so that the battery voltage re-
mains constant at 57.6 V. FromEqs. (5) and (4), in order to keep the bat-
tery voltage constant, the PV current must change in response to
changes in wind turbine and inverter current. Fig. 5 shows an example
of the PV current changing in response to variations inwind turbine cur-
rent in an attempt to keep the battery voltage constant. As wind turbine
current increases, the PV current decreases. This scheme therefore pri-
oritizes wind turbine current.

There are limits to the PV controllers' ability to regulate the battery
voltage. Because IPV cannot be negative – this wouldmean the PV panels
are consuming power – high levels of wind turbine current can cause
the battery voltage to exceed the PV controllers' absorption set-point.
If the voltage reaches 58.4 V, then the diversion controller will enter
the absorption stage. The diversion controller regulates the battery volt-
age by controlling the current into the diversion load IDL, so that less cur-
rent enters the battery, as dictated by Eq. (4). Should this condition
persist long enough, the diversion controller will enter the float stage
and will regulate the voltage at 54.8 V.

It may seem strange to include a diversion controller in place of a
wind turbine controller. However, it is common practice in hybrid
microgrids (Morningstar Corporation, 2012; Hirose and Matsuo,
2011). Reducing current from a wind turbine by disconnecting it from
the DC bus as would be done through PWM can cause hazardous and
damaging over-speed and over-voltage conditions.

Statistical analyses

The basic operating characteristics of a hybrid microgrid are
discerned from profiles of the load (inverter) current, and current
from the generation sources, as shown in Fig. 6. For each quantity, the
25th, 50th (median) and 75th percentiles are provided. The percentiles
provide information on the variation that occurs. Accompanying statis-
tics are provided in Table 2. Note that the statistics for each variable are
computed separately—the median day for solar energy production, for
example, does not necessarily correspond to the median day for the
load.

The plots of the diversion load current are not shown because they
are often zero. However, the diversion load is important for over-
voltage protection, and although the median daily energy consumed
by it is 80 Wh, it is activated at least once in approximately half of the
days.
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Fig. 5. PV panels and wind turbine current during the absorption stage.
Fig. 6A shows that the load is generally below 10A, with the greatest
consumption occurring in the evening hours from 19:00 to 22:00, when
all of the interior and exterior lights are on, in addition to any overnight
charging or refrigeration that might be occurring in the kiosk.

The current from the PV panels is shown in Fig. 6B. As might be ex-
pected, the PV panels begin production at sunrise, rapidly increasing
until 10:00. Note the large, approximately 10 A difference in production
between the 25th and 75th percentiles between 10:00 and 12:00. Also
notable is the asymmetry and skewness of the traces. In fact, the 25th
percentile trace approaches zero at 15:00, despite the abundance of
available solar irradiance at this time. This is caused by the absorption
stage operation of the PV controllers and, to a lesser extent, the prioriti-
zation of wind energy over solar.

The current from the wind turbines is shown in Fig. 6C. As is com-
mon with wind generation, the current follows a diurnal pattern. It
peaks around 16:00 and is generally low overnight and in the morning
hours. The wind turbines only produce 35% of the energy input to the
microgrid. However, this share would be less if not for the controllers
prioritizing wind energy over solar energy as described previously.

To further illustrate the variability in energy production that occurs,
consider Fig. 7, which shows the energy input by source for a ten-day
period of theMuhuru Baymicrogrid. It is clear that not only does the ab-
solute amount of production change, but also the relative contribution
from each source. This variability is expected in hybrid microgrids in
Table 2
Energy Statistics

Quantity Min. 25% Median 75% Max.

(kWh) (kWh) (kWh) (kWh) (kWh)

Load 2.59 4.39 5.30 6.36 10.15
Solar 0.93 3.74 4.80 6.32 10.75
Wind 0.69 2.23 2.84 3.40 7.65
Diversion 0.00 0.03 0.08 0.17 2.05
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general. Within the data set are days in which the PV panels produce
90% of the energy, and days in which they produce only 10%.

Time-series analyses

In this section, time-series of three specific days from the data set are
examined in detail in order to further elucidate the operation of hybrid
microgrids. Proper interpretation of time-series data is important in de-
termining if themicrogrid is operating as planned, or is in danger of fail-
ure. The time-series correspond to a typical day, a day with high load,
and a daywith low load but high wind energy production. A qualitative
analysis approach is taken, as this is most useful and accessible to
microgrid operators reviewing data in real- or near real-time.

Operation under typical conditions

Considered first is a typical operating day, where the load and gener-
ation profiles are close to the median values. The specific day is 15 May
2015. Shown in Fig. 8 are the measured battery voltage (VB); battery
current (IB), load (inverter) current (IDC), PV current (IPV), wind current
(IWT) and diversion load current (IDL).

The battery begins the 24-hour period shown in Fig. 8Awith a termi-
nal voltage of 49.6 V. The battery is discharging, as evidenced by the
negative current at the start of Fig. 8B. The PV current is zero and the
wind power is intermittent and near zero. The load is 2.9 A (145 W).

As the sunrises at approximately 7:00, the solar production begins to
increase steeply and the load decreases sharply as lighting is switched
off. At approximately 7:30, the battery current becomes positive as the
PV controllers enter the bulk charging stage. At its peak, the battery is
receiving more than 20 A of current (1.1 kW), primarily from the PV
panels. The battery current's generally steep rise from 7:00 to 10:45 fol-
lows the increase in solar irradiance in the morning hours. The irregu-
larities in the trend are due to intermittent cloud coverage.

The battery voltage rapidly rises during the bulk stage due to the
large current, internal impedance of the battery and the increasing
state of charge, as in (5). Just before 11:00, the battery voltage reaches
approximately 57.6 V—the absorption stage set-point of the PV control-
lers. The absorption stage lasts until 14:30 as shown in Fig. 8A.

The regulation function of the PV controllers is apparent from the
skewness and general asymmetry in Fig 8D. In the absorption stage,
the current from the PV panels is being reduced to maintain a constant
battery voltage. As the battery's state of charge increases, the current
into the battery and from the PV panels decrease in a generally smooth
exponentialmanner beginning just before 11:00 as shown in Fig. 8B and
Fig 8D. The PV panels are also supplying themajority of the load current
during this time.

The curtailment of solar energy by the PV charge controllers is an im-
portant aspect of microgrid operation, and one that can easily be
overlooked by designers. In order to realize the production potential
of the PV panels load should be added during or shifted to the absorp-
tion stage, if possible.
The absorption stage ends at approximately 14:30 and the float
stage is entered. The PV current is decreased until a the battery voltage
reaches the PV controllers' float set-point (53.6 V). The transient spikes
in voltage seen between 15:00 and 17:00 are due to intermittent in-
creases in wind turbine current. The PV current cannot be decreased
below zero during these fluctuations and thus the float voltage is not
tightly maintained. The diversion controller does not act because the
battery voltage remains below its absorption stage set-point.

After 18:30 the battery begins to discharge as the available PV cur-
rent is insufficient to match the load. The battery voltage is now deter-
mined by the load and the wind turbine current. The battery voltage
fluctuates during the evening, following the wind power production.

Thehallmark signature of the battery voltage rising to the absorption
stage set-point, remaining in that stage for several hours and then re-
ducing to the float set-point is a good indicator that the system is oper-
ating as designed and that there is sufficient generation to match the
load. It is shown next that when demand exceeds the generation, the
battery voltage signature is notably different.
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Fig. 9. Time-series of measured quantities for a high load day.
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Fig. 10. Time-series of measured quantities for a low load, high wind day.
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Operation under high load conditions

Considered next is the operation of the hybrid microgrid when the
daily load is high. The data correspond to 8 September 2015. A freezer
was introduced to the microgrid to sell ice to the fisherman in Muhuru
Bay. The profiles are shown in Fig. 9. The load is 8.9 kWh, exceeding the
75th percentile.

The battery begins bulk charging at 8:00 and never reaches the PV
controllers' absorption set point voltage of 57.6 V. Also note the profile
of PV current in Fig. 9D. The trace is nearly symmetric and the energy
production is substantial. The system is maximizing the power pro-
duced by the PV panels because the controllers remain in the bulk
stage. The PV current is starkly contrasted with the trace in Fig. 8D
where it is clearly asymmetric and notably attenuated.

The total production from the PV panels is 11.4 kWh. Although this is
greater than the load, it is not enough to overcome losses and a low ini-
tial battery state of charge. Because the battery never reaches or com-
pletes the absorption stage, it does not obtain a full state of charge.
Unless preventativemeasures are taken, or thewind turbine production
increases, the batteries will become discharged to the point that the
inverter will self-disconnect and a blackout condition will ensue. After
reviewing the profile, themanger of themicrogridwas advised to adjust
the load by installing more energy efficient lighting and decreasing
overnight load. This correction is one example of the usefulness of
real-time data monitoring to prevent failure.

Operation under low load/high wind conditions

Next considered is a day with low load and abnormally high wind
energy production. The day considered is 7 July 2015. The data corre-
sponding to this day are found in Fig 10. Overnight, a light load of
2.5 A (124.6 W) coupled with a high and consistent wind caused a
rare occurrence: the battery was charging before the sun rises, as seen
by the generally positive battery current in Fig. 10B and the increase
in battery voltage in Fig. 10A during the early morning hours.

At sunrise, the PV controllers begin to bulk charge the battery, but
this stage only lasts from 7:00 to 8:30 before the absorption set point
voltage of 57.6 V is achieved. The PV current is now being regulated in
an attempt to maintain a constant terminal voltage. However, the
wind turbine current continues to increase, and after the PV current is
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reduced to zero, the PV controllers can no longer maintain a constant
battery voltage. The voltage increases.

The battery terminal voltage reaches 58.4 V — the absorption set-
point of the diversion load controller. Inspection of Fig. 10F shows the
diversion load current increase from zero starting around 8:30 as the di-
version load is activated. The diversion load controller is generally able
to maintain the battery voltage at its absorption set-point of 58.4 V.

At 13:00, the absorption stage ends and the voltage decreases sharp-
ly to approximately 54.8 V—the diversion controller's float set-point.
The battery current vacillates around zero. Inspection of Fig. 10F
shows that current is flowing through the diversion load from approxi-
mately 8:00 to 16:00, indicating its operation.

The data show another unusual occurrence this day: the appearance
of a second spike in voltage from 18:00 to 19:00. By this time the float
stage has ended, and the controllers are ready to re-enter the bulk
stage. A spike in wind current causes the battery voltage to rise sharply
until, again, the absorption set point of the diversion load is reached and
the diversion load is briefly activated.

The time-series clearly shows the priority that wind energy is given
over solar energy in hybrid microgrids as 6.7 kWh were produced by
wind turbines and 0.9 kWh were produced by the PV panels. It also is
an example of a day in which it would be technically beneficial to add
load to the system to increase solar energy production and utilization.
In fact, any time the diversion load is activated, the microgrid operator
should consider increasing the load, for example by turning on another
refrigerator.

Microgrid diagnostics

It has been shown that the typical operation of a microgrid has the
battery's profile distinctly following bulk, absorption and float stage.
For off-line monitoring, a straightforward way to determine if the bat-
tery is routinely charged is to create a histogram of the battery voltage,
as shown in Fig. 11. There should be notable spikes at the absorption
set-point and float set-point voltages. Depending on the particularities
of the system, other peaks may occur, such as the one around 50 V in
theMuhuru Bay system. In general, the absorption stage should last be-
tween three and five hours, which is 12 to 16.7% of the hours, as in
Fig. 11. Note that some controllers include temperature compensation
to automatically adjust voltage set-points, so that the peaks might not
exactly correspond to the pre-programmed values.

Additional insight can be gained from examining a histogram of the
time at which the absorption stage begins, as in Fig. 12. The start of the
absorption stage is detected based on the first sustained (more than
20 min) occurrence of the absorption stage set point voltage in a 24-
hour period. The earlier in the day the onset of the absorption stage oc-
curs, the quicker the battery completed bulk stage, indicating either a
light overnight discharge or great availability of the solar or wind re-
source. For Muhuru Bay, the median time that the absorption stage be-
gins is 10:30. Because the wind is more unpredictable and variable, it is
important that ample time is given to complete the absorption phase
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Fig. 11. Distribution of battery terminal voltage.
while there is sufficient solar irradiance. If the absorption stage is
reached less than 3 h before sunset, it is likely that the battery is not
being fully recharged.

Efficiency analysis

The efficiency of a microgrid is difficult to accurately estimate a
priori, yet is critical in designing an appropriately sized microgrid. The
efficiency of the microgrid over a 10-day period is shown in Fig. 13.
The light grey bars are the sum of the energy produced by the PV panels
and the wind turbines. The dark bars are the energy output, which is
computed from the inverter output quantities. As expected, due to
losses, the daily energy input is greater than the output.

The dashed line in Fig. 13 shows the computed daily efficiency,
which ranges from 52 to 74%. The wide variation is strongly influenced
by discrepancies in the starting and ending state of charge of the battery.
For example, if the battery started the 24-hour period at a low state of
charge and ended it with a high state of charge, the apparent efficiency
would seem low. Therefore, a more appropriate way to compute the ef-
ficiency of the battery is through a multiple day running average, as
shown in the solid black line in Fig. 13. The microgrid efficiency stabi-
lizes at approximately 65% during this period, which is comparable to
that of the computed lifetime average efficiency of 67%.

The analysis efficiency can be refined further. The chart in Fig. 14
shows how the losses are allocated. The charge controllers are responsi-
ble for 8.5% of the losses, based on their reported self-consumption of
3 W. The inverter losses are computed using the curve in Fig. 2, and
are responsible for 14.7% of the losses. The diversion load is responsible
for 4.0% of the losses. The remaining losses are attributed to the battery
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Fig. 13. Energy efficiency of the system over a ten-day period.
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and other losses, such as the resistance of the cabling. However, it is ex-
pected that these other losses are negligible when compared to the bat-
tery losses. The round trip efficiency of the battery is 72.8%
or—assuming equal charge/discharge efficiency—a one-way efficiency
of 85%.

It is of interest to investigate what conditions make the microgrid
more efficient. A strong predictor is the ratio of energy output to total
energy exchanged with the battery—either going into or coming from
it. This is sensible because energy is lost each time current enters or
leaves the battery. Days in which the sum of the energy into and out
of the battery are low relative to the overall inverter energy output
means that the load temporally corresponds with the energy produc-
tion, resulting in an efficient system.

Fig. 15 displays a scatter plot of energy efficiency versus energy out-
put divided by total energy exchanged with the battery. The linear cor-
relation coefficient is 0.58, with a p-value of 9.7e−6, indicating
statistical significance. These results support the intuitive guideline
that efficient microgrids are those whose demand coincides with the
production.
Conclusion and future outlook

Microgrids are an important solutions to electrical energy poverty in
rural communities. Analysis of real- or near-real time measured data
frommicrogrids can optimize the usage and prevent against premature
failure. This article usedminutely-sampled data over a 14-month period
to examine how hybrid solar/wind microgrids behave in the field. The
article discussed aspects of microgrid control, and showed how control-
lers influence the operational behavior of the microgrid and prioritiza-
tion of the energy sources. Statistical and time series analyses were
conducted, showing the range of behavior that can exhibited by a hybrid
microgrid. Simple diagnostic methods were presented that allow the
user to quickly determine if the microgrid is being over- or under-
utilized. The efficiency of the microgrid was explored, and it was
shown that the microgrid operates at an average efficiency of 67%,
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Fig. 15. Scatter plot of the ratio of energy output to energy exchanged with the battery
versus microgrid efficiency.
with the amount of energy exchanged with the battery relative to the
total load being a strong predictor of the efficiency.

The Muhuru Bay hybrid solar/wind microgrid has produced over
2 MWh of energy to date. Corrective decision-making, informed by
the data analyzed in this article, have kept the system on-line and able
to continually serve the local community.

This article is the first exploration of the use of high-resolution oper-
ational data for microgrid analyses. Future work includes investigating
and forecasting microgrid demand, failure analysis and using the data
to improve future designs.
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