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Electrical utilities need to plan their investments in substations and networks to meet future customer demand,
by predicting the spatial load growth and its time trend. Several techniques are currently in use to do that, such as
trending analysis or simulation methods. To study the electricity demand we used multifractal analysis. A fractal
is an objectwhose irregularities are not smooth andhave some self-similarity at different scales. If the fractal does
not have strict self-similarity, we could break such fractality, if it really exists in the system, in a spectrum of sub
fractals which have a self-similar structure, performing the so-called multifractal spectral analysis. Multifractal
spectral analysis has been already applied to study the morphology and population growth of cities. Because
electricity demand can be related to demographics of cities, it is possible to consider the hypothesis that
multifractal spectral decomposition can be applied to analyze electricity demand. A variety of multifractal
analyses were performed on real data from the customer demand of an electrical utility. The results show that
the analyzed electricity demand is split into clear and interesting two-multifractal distribution with properties
not found yet in the literature on the subject. This type of multifractal analysis could lead the way to improved
spatial demand forecasting methods.

© 2017 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Introduction

According to Willis (2002), the methods currently in use by electric
utilities to do spatial electric load forecasting can be divided into two
main groups: non-analytic, mainly based on the judgment of the user
(by using computer programs or not) with poor accuracy, and analytic.
The analytic methods can be grouped into two categories: trending and
simulation.

Trending methods use the past and present loads, fit a polynomial
function to the historical data, and apply this function for extrapolating
to the future, on an equipment-area basis, for example, feeders or sub-
stations. This method is most suited to large area forecasting, but it
is not accurate for spatial forecasting in small areas with high spatial
resolution (Willis, 2002).

On the contrary, simulationmethods (Willis, 2002; Vieira Tahan and
Pereyra Zamora, 2002; Sharma and Sreedhar, 2002) are useful in high
spatial resolution and long-range forecasting. Simulation methods
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split the studied region into small areas, and then, by using some infor-
mation about demographics, land-use, local geography, energy demand,
etc., apply algorithms to forecast the demand in both aspects, spatial
and temporal. Thesemethods requiremore data than trendingmethods
and they usuallymanage the two causes of electric load growth (change
in the number of consumers and change in per capita consumption)
separately.

Multifractal spectral analysis has been applied to study the mor-
phology and population growth of cities (Thibault, 1995; Batty and
Longley, 1994; Frankhauser, 1998; Tannier and Pumain, 2005;
Kholladi, 2004; Czerkauer-Yamu and Frankhauser, 2010). The fractal
approach in demography is at the same time a method of spatial analy-
sis, a geometricalmethod to createmodel urban patterns, and an instru-
ment for investigating the dynamics of cities. It reflects the hierarchical
structure of cities and their irregularities and different scales, i.e., some
kind of self-similarity, see below.

Thus, and since electricity demand is closely related to the demo-
graphics of cities, we proposed the following hypothesis: Can it be
useful to apply multifractal spectral decomposition method to analyze
electricity demand?

To answer this question and after a brief theoretical introduction to
fractals andmultifractal spectrum,we present the appliedmethodology
.
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and the results of several multifractal decomposition calculations, and
after some remarks about the obtained results, we proposed indices to
analyze and characterize the demand.
Brief introduction to fractals

Fractal objects and fractal geometry generalize the “Euclidean
dimension” and is better than Euclidean geometry for the spatial de-
scription of patterns fromnature and from social organizations. The sys-
tem properties described by fractal structures are heterogeneity,
hierarchy and self-similarity (Tannier and Pumain, 2005).

In literature there is not a close definition to a fractal. A set “F”named
as a fractal is characterized in terms of its properties (Falconer, 2003):

(i) F has a fine structure, i.e. detail at arbitrarily small scales.
(ii) F is too irregular to be described in traditional local and global

geometric language (Euclidean).
(iii) Often F has some form of self-similarity (the same would be

making a “zoom”), sometimes approximate or statistical.
(iv) Usually the “fractal dimension” F, defined in someway (by exam-

ple, the box dimension dB), is greater than their topological di-
mension (whichwould be dB=1 for a line or dB=2 for a surface).

(v) In most cases of interest F is defined in a simple way, and often
recursively.

Fractals in nature are not only geometric. They also appear in sev-
eral disciplines, as chemistry, astronomy, physics (including dielectric
relaxation), social sciences, etc. (Rosen and Piacquadio, 2008; Piacquadio
and Rosen, 2007; Jonscher, 1995; Jonscher, 1983; Piacquadio Losada,
2011). Fractals are in the very nature of a lot of natural phenomena.

A classic example of a geometric fractal is the “Cantor Set” which is
obtained by eliminating, step by step, the central part of the segment,
starting with unit length segment [0, 1] (Fig. 1). It is usual to suppose,
going to infinite, that the “Cantor Set” becomes a set of points, and
in this case their dimension has to be zero. But, it is wrong as we will
see later.

Another fractal of interest, mainly in demography, is the “Sierpinski
Carpet” (Fig. 2).

To calculate the box dimension “dB” of the “Sierpinski Carpet”, we
can first consider a full square of unit side, and then we divide each
side of the square into “n” equal parts. What we are doing is to cover
the entire surface with small square boxes, also square all of them, in
the form of a “regular grid”, of side L = 1/n (and which do not overlap
each other). An amount of N boxes is required, where N = n2 boxes
(in the case similar of a cube N = n3 boxes are required, all of them
with length side L = 1/n). Note that the exponent “2” or “3”, based on
the power of n = 1/L, is responsible for the size dimension (Euclidean)
of the object, “2” in the case of a square, “3” in the case of a cube.
Fig. 1. “Cantor Set” (Mandelbrot, 1977).
These “2” or “3” exponents can be obtained with the following formula:

Log N
Log n

¼ Log N
Log 1=Lð Þ ¼

Log N Lð Þ
Log 1=Lð Þ

for example,

Log n2

Log ½ð1= 1=nð Þ� ¼ 2

In the “Sierpinski Carpet”, i.e. a fractal in the R2 plane, and after
covering the entire surface with the “regular grid”, we have to count
the occupied boxes N(L). Then, the definition of box dimension, “dB”,

is “Log N(L)/Log (1/L)”, and the result is dB ¼ log5
log3 ¼ 1:47 . For the

“Cantor Set” the result is dB ¼ log2
log3 ¼ 0:63.

The word fractal comes from fracture or fraction, because it is not
necessary for the expression “Log N(L)/log (1/L)” to be an integer, as
shown above for the “Cantor Set” and for the “Sierpinski Carpet”. “L”
must be small, which means that, from a theoretical point of view, the
expression “Log N(L)/log (1/L)” should go to the limit for L → 0. But, in
practice, this limit does not have empirical sense, and must be replaced
by “L” as small as the experiment allows.

When a fractal object F has the same geometric structure in all its
parts taken separately, when such a structure is identical to the one of
the total object, and when it is independent of the scale, that is, the
size of the parts tested, it is said that the fractal F is similar to their
own parts, i.e., is “self-similar”. Examples of strict self-similarity are
found in the Cantor Set and the Sierpinski Carpet.

However, a “natural “or “real “fractal does not have that feature of
strict self-similarity, then we could break such fractality, if exists in
the reality of the system, in a spectrum of sub fractals which have a
self-similar structure.Moreover, a real fractal contains somevariable as-
sociated with each box, as weight, mass, population density or energy
consumption of electrical energy. Such “weight” or “measure” (pi), nor-
malized to unity, is a distribution of probability on the fractal.

For each box Bi, with i∈[1, N = n2], we can define the “α-
concentration” as “log–log” version of the density: αi = α(Bi) =
Log pi/Log L.

We also define “f(α)” as the fractal dimension of the set of boxes
with the same “α-concentration”: f(α) = Log Nα/Log (1/L), where
Nα is the number of boxes with concentration “α”. If we represent
“f(α) vs. α”, we obtain the multifractal spectrum of the fractal F.
In Fig. 3 is shown the multifractal spectrum in a theoretical case
in which it is possible to consider the limit conditions L → 0, N → ∞,
and also Nα → ∞.

In accordancewith Fig. 3 somegeneral properties can bementioned:

(i) f″(α) = d2f/dα2 b 0, which means that both branches of f(α)
goes down.

(ii) f(α) is tangent to the bisector of the first quadrant f(α) =
α (as “y = x”).

(iii) f(α) is tangent to the horizontal f(α)=dB(F),which is the fractal
dimension of the fractal set F.

(iv) The smallest values of α, αmin in particular, correspond to the
“heavier” boxes, and the greatest values, in particular αmax,
correspond to the “lighter” boxes, as can be easily demonstrated.

In practice, boxes with Nα=1 oNα=0 are possible, then Log Nα=
0 or ∞. To avoid this case, alpha interval [αmin, αmax] must be divided
in a number of sub-intervals with length “Δα”, and then make
the counting of theα values within each interval. In this way we obtain
reasonable Nα. The total number “N” of “alphas”, i.e., the total number
of occupied boxes, which determine the fractal dimension dB(F) =
Log N/Log (1/L) is now exploded among several Nα. In one of the
Δα intervals there is an “α” for which “f(α)” is the maximum de



Fig. 2. “Sierpinski Carpet” (Frankhauser, 1998).
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“f(α)”, fmax = Log Nα/Log(1/L). But Nα is significantly smaller than N,
then fmax cannot reach dB(F). Because of that, in an empirical situation,
and if the nature of the analyzed phenomena can be represented by
a multifractal spectrum, f(α) will be below the horizontal dB(F), and
f(α) will go close to the bisector of the first quadrant f(α) = α but
will not be necessarily tangent to f(α) = α.

An empirical example of a multifractal is shown in Fig. 4.
Methodology

Weworkedwith real data of the customer demand froman electrical
utility. The data are in the formofmaximumpower density δ [MW/km2]
of one 2009 semester, placed geographically in coordinates (x,y), and
defined in “boxes” of 500 m × 500 m, in a regular grid of 208 × 208
boxes = 43,264 boxes, many of them without demand, since there
were no users in these areas, e.g. parks. The sample data available for
the calculation comprised 6913 points.

If customer demand raw data were plotted in a city plan view, they
show some areas with higher demand, and other with lower demand
(Fig. 5). Data can be also grouped according to the MW/km2, and/or
according to the land use, for example rural or urban, but in this way
they do not show any internal structure, as the structure we have
found and that is presented below.

The “weight” or “measure”(pi) of each box is the δ[MW/km2], but
normalized to unity divided by the total sum of “δ” from all boxes
(onemultifractal spectral analysis considers only those cases of positive
measure and requires transforming the distribution of measures in a
probability distribution), being the total sum as “T” of the entire
grid. According to the definitions above, L = 1/208 is normalized
for the unit side of the regular grid covering the study area. Then the
“α-concentration” were calculated as “log–log” version of the density
αi = α(Bi) = Log pi/Log L, and then these αi have to be in order from
lower to higher values, with “i” from 1 to 6913. As a result we obtained
the lower value of α, α1 = 1.02451 and the higher, α6913 = 4.37516.
Fig. 3. Theoretical multifractal spectrum.
An adaptation from Falconer, (2003).
After that we analyzed the obtained values of “α”, because it is
necessary to identify the representative values of fractal structure of
the experiment, in the case of this fractality really exists (not all phe-
nomena of nature can show fractal distributions).

At this point, we should clarify the concept of “Scattering of a
Multifractal”: In a “perfect”, i.e., “mathematical” fractal object, each ele-
ment is infinitely close to an infinite number of other elements fractal.
However, in an experimental context, with empirical data from a real
system, some elements may be far from the core (cluster) elements,
where the studied fractal object is presumably concentrated. These
boxes, correspond to ones not closer to others, but scattered. This
phenomena is called “Scattering” and applied to the lighter boxes,
found in the right zone of alphas, and that is the reason why it is
named “Scattering at the right” (a pure, mathematical fractal does
not have scattering, because it does not have isolated points). In the
available data we found that between α6881 = 3.19445 and α6913 =
4.37516 there were only 32 data points, which means that these points
do not belong to the system, or in multifractal language they are not in
the fractal. They are the “Scattering at the right” and have to be removed
from the analysis.

Looking into the 32 data points at the left zone of alphas, we did not
find a similar “Scattering at the left”. Then the results shown below are
from the α1 to α6881 range of values.

Results

Multifractal spectrum f(α)

The maximum theoretical dimension of the fractal is dB(F) = Log
N/Log (1/L), in this case dB(F) = Log 6881/Log (208) = 1.6555. For
the empirical fractal the maximum value of f(α), fmax, will actually
be significantly lower (for a square the dimension is “2”).

The “alpha” range [αmin=α1= 1.02451;αmax=α6881= 3.19445]
has to be divided into a number ofΔα intervals, formaking the counting
of α values inside each interval.
Fig. 4. Empirical example of multifractal spectrum.
Rosen and Piacquadio (2008).



Fig. 5. Customer demand raw data plotted in a city plan view (Vertical axis: customer
demand in arbitrary units; Horizontal axes: the boxes defined above).
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Since the calculationswere performedonfinite samples, obtained em-
pirically, it has beennecessary to apply the criteria for the treatment of the
data established in (Rosen and Piacquadio, 2008), i.e., to obtain a smooth
curve (α, f(α)) and to “avoid”αswithno corresponding value of f(α). The
number ofΔα intervals has to be slightly smaller than that of the 4th root
of the maximum number of boxes, in this case (43264)1/4 ≅ 14 intervals.

Moreover, to obtain a value of fmax closer to dB(F), whichmeans im-
proving the quantitative aspects of f(α), a low number of intervals has
to be chosen. To improve the qualitative aspects of f(α) it is necessary
to choose a large number of intervals. After several calculations we de-
cided to work with 11 and 9 intervals.
Results for 11 intervals Δα

In Fig. 6 we present the multifractal spectrum obtained for 11 inter-
vals, showing (Ln Nα) instead of (Log Nα/Log L), without scaling factors,
to give a qualitative image. The curve obtained seems to be the combi-
nation of two multifractals which is, at least, a finding for this field of
knowledge.

As a confirmation for the election of 11 intervals, it can be said that
6881 points divided by 11 intervals, give about 625 per interval. Then,
we can say that the unit for counting alphas could be 100, and for the
first and last intervals, the numbers of 50 and 55 sound reasonable.
Another selection of number of intervals have implied numbers of
Fig. 6.Multifractal spectral
10, 7 or even 1 alphas, which are unacceptable because they do not
represent the phenomena properly.

A further calibration
By comparison between the left part of the points from Fig. 6 with

Fig. 3, it must be made an additional analysis looking for a possible
“Scattering at the left”. Making a detailed analysis for the second deci-
mal, we concluded that the seven first values of α can be discarded be-
cause their variation ismore disordered than the variation for the rest of
43 elements of the first interval.

Despite discarding these elements, we have continuedworkingwith
a precision of 99.9%of the total data,which is very acceptable in this em-
pirical context. The results are shown in Fig. 7, where the only modified
values are the ones in the first row, going from (Ln 50) to (Ln 43). The
seven discarded boxes are abnormally heavy, and correspond to very
high demanding consumers, that have to be out of the systematic
analysis. Here it can be said that by doing amultifractal spectral analysis,
it is possible to adjust the data universe to only the representative cus-
tomer universe.

Characteristics of the multifractal spectrum
Two spectra were shown in Fig. 7, both with f″(α) = d2f/dα2 b 0. In

Fig. 8, the two spectra are shown split.
The left spectrum, with α in the [1,2] interval, correspond with the

boxes shown in red in Fig. 9. The right spectrum, with α in the [2,3]
interval, correspond with the boxes shown in green in Fig. 9. We are
going to name them as “Red spectrum” and “Green spectrum”, and
their correspondent fractals as “Red fractal” and “Green fractal”.

It has to be noticed that the “Red spectrum” corresponds to a central
region, or to a connected core, meanwhile the “Green fractal” corre-
sponds to a peripheral zone, which surrounds or encircles the central
red zone. Between the core and peripheral zones there exists a common
frontier, pointed in Fig. 9 by the arrow, which will be later explained as
the “Scattering of the red”, with α slightly greater than 2.

Results for 9 intervals Δα

In Fig. 8, and for 11 intervals, there were 5 intervals Δα, i.e., 5 points
(α, f(α)) for the red fractal, 5 for the green fractal, and 1 for the interme-
diate frontier. But, for 9 intervals (Fig. 10) there are 4 points for the red,
4 for the green, and 1 for the frontier.

To calculate with 9 intervals, instead of 11, the advantage of fmax =
1.47 goes more closer to the theoretical value dB(F) = 1.65, because
the calculation with a lower number of points is better in quantitative
aspects, but worst in qualitative ones. From a practical point of view it
values for 11 intervals.



Fig. 7. Calibrated multifractal spectral values for 11 intervals.
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is considered acceptable if dB(F)/fmax ≤ 1.33. In this case dB(F)/fmax =
1.65/1.47 = 1.12, which is really good.

Remarks

1. Each spectrum (red and green) has its own fmax. But there is a unique
fmax for the complete spectrum,which has to be close to dB(F). In this
case, the fmax close to dB(F) corresponds to the red spectrum, and
confirms a mathematical property: if there are two objects with dif-
ferent fractal dimension, then the dB (union of both objects, in this
case red and green) = dB(object of higher dimension, in this case
the red).

2. As we have said, a multifractal spectrum (α, f(α)) has to be tangent,
where f′=0 to thehorizontal f(α)=dB(F) ≅ fmax, and also tangent to
the bisector of the first quadrant f(α)=α (as “y= x”). The obtained
spectrum fulfills the two conditions.

3. In the studied system, the twomultifractals correspond to two zones
geographically separated. We call this structure “two-multifractal”.

4. System stability. There are in the literature many examples where
if the number of Δα intervals is changed, the spectrum changes
qualitatively. In the studied system this problem does not occur, as
Fig. 8. Split multifractal spe
can be seen in Figs. 11 and 12. This stability property of this system
is rare and outstanding in an empirical situation of multifractal
analysis.

5. Pre-multifractal fractal dimension. To confirm that the object is a true
fractal it is necessary to confirm that the dB(F) = 1.65 could be ob-
tained (approximately) even in the case in which the boxes covering
the possible fractal change in size and location, i.e. changing “L” and
then N(L) in the expression dB = Log N(L)/Log (1/L) the results do
not change.

The expression “Log N(L)= dB ∗ Log (1/L)” has to be independent of
the value of “L”, from a theoretical point of view. In an empirical context,
the typical test is to represent “Log N(L)” vs. “Log (1/L)” for several “L”.
Then if the result is a straight line “Log N(L) = dB ∗ Log (1/L)” passing
through the origin, the fractality can be assumed. In Fig. 13 we present
the results, for different box sizes, which are in good agreement with
the straight line from the origin to the farthest point (which is the
best approximation to the theoretical limit L → 0, or N → ∞).

6. Frontier between red and green fractals (scattering of red fractal).
As a result of the multifractal analysis, all the customer demand
ctrum for 11 intervals.



All the boxes
Relationship of boxes with the map of the city

Red fractal Green fractal

Fig. 9. Plan view of the customer area and its fractals.
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was split into two zones, geographically separated, and shown in Fig.
9, the core red fractal and the peripheral green fractal. Between them
there exists a frontier corresponding to a unique point of the (α,
f(α)), with α slightly greater than 2, which is at the same time an
outer frontier for the red fractal (scattering at the right), and an
inner frontier for the green fractal (scattering at the left). Fig. 14
shows the red fractal, plus the frontier points (black dots), and it
can be seen that the frontier is a geographic frontier, surrounding
the red zone of great demand represented by the heaviest boxes.

7. Sub-fractal frontier in detail. It has Nα = 638 points, with α from
2.0108 to 2.2081. In this sub-fractal it is possible to obtain its
multifractal spectrum as an independent problem. Because Nα

is greater than 600, the unit will be 100, and then the interval
[2.0108, 2.2081] is divided in 7 subintervals Δα. The ratio of maxi-
mum and minimum f(α) in this interval is 1.07 which is approxi-
mately 1, i.e. f(α) is constant from a practical point of view in this
interval, whichmeans same dimension for subsets of different prob-
ability or different weight or measure.

Fig. 10 shows that the fractal dimension of this frontier fractal is
1.24. If the dimension were 1, and constant, it could be visualized as a
line surrounding the red fractal, formed by an irregular polygonal of
smooth curves or segments of different length. Since the dimension is
different from 1, it is not a line, but because the dimension is constant,
it maintains the “frontier” character, i.e. zones of the same dimension,
but different measure, surrounding some region.

8. Scattering. Fig. 15 shows approximately 30 points thatwere discarded
because they correspond to very light boxes, and we named them
“Scattering at the right”. The red and green fractals are represented
in this figure only for comparison purposes. These “30” point are
scattered geographically.



Fig. 10. Split multifractal spectrum for 9 intervals.
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It is also possible to show the geographical situation of the 7
abnormally heavy points which we also discarded. Fig. 16 show
that these points are not connected among themselves. Once identi-
fied, it is possible to perform other analyses of these customers:
e.g. type of consumer, substation from where they are supplied elec-
tricity, etc.
Indices for the analysis and forecasting of the spatial growth
of demand

The typical models for fractal growth, also in use to forecast the
demographic growth of cities (Batty and Longley, 1994), called DLA
(Diffusion Limited Aggregation) and DBM (Dielectric Breakdown
Fig. 11. For 11 intervals Δα, considering 7 initial points, but without 30 final points.
Model) (Vicsek, 1992) are not necessarily adequate to forecast the
electric demand, because it is necessary to know, at the same time,
the spatial and the temporal growth of that demand, which could be
different for different kinds of customers, and as we have seen, are
not disordered and random, but is structured in the light of
multifractal analysis.

That is the reason why we have developed some indices applying
the results of the multifractal analysis, as a first step to the develop-
ment of a more complete model in the future. The indices have to
be applied to a definite period in time, by example, year, month, season,
with the idea of comparing these indices periodically. Some of them are
defined for the spectrum as a whole, and others for the red and/or
green fractals, but can be generalized for multifractal distributions
that can be different from the one we have analyzed. We present
below ten indices, where the notation “r” o “g” means red or green
spectrum.
Fig. 12. For 10 intervals Δα, discarding α ≥ 3,5.



Fig. 13. Pre-multifractal fractal dimension.
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Indices for the variation of demand, in the α axis

Ir1 ¼ αr
max−αr

min

I1 measures the increase or decrease of “high” demand (red fractal).
Applied to the green fractal, I1

g measures the increase or decrease of
“low” demand.

Indices for the variation of demand, in the f(α) axis

At the beginning, we consider only the maximum value of each
subfractal of the spectra.

Ir2 ¼ f rmax

Refining the idea, it could be possible to think of an absolute or rela-
tive integrated variation of the demand:

Ir3abs ¼ ∫α
r
max

αr
min

f r αð Þ� �
∙ dα

Ir3rel ¼
1

αr
max−αr

min

� � ∫α
r
max

αr
min

f r αð Þ� �
∙ dα

However, because of the split of the total α span into identical Δαs,
andwith nr the number of parts corresponding to the red fractal,wehave:

Ir3rel ¼
1
nr ∑

nr

k¼1
f r kð Þ

Similar expressions can be obtained for the green fractal.
Fig. 14. Pre-multifractal fractal frontier between red and green fractals.
These indices represent other ways to measure the increase or
decrease of “high” demand (red fractal) or the increase or decrease of
“low” demand (green fractal).

Variation of the highest (or lowest) demand, integrated, absolute or relative

For the red fractal, the lowest α corresponds to the heaviest boxes,
i.e. those with the highest demand.

But it may happen that f r(αr
min) varies without variation of f rmax,

which means that there is a variation of the highest demand. Then, by
integrating the red fractal only at the left:

Ir4abs ¼ ∫
αr f rmaxð Þ
αr
min

f r αð Þ� �
∙ dα

Ir4rel ¼
1

αr f rmax

� �
−αr

min

� � ∫
αr f rmaxð Þ
αr
min

f r αð Þ� �
∙ dα

Similarly, the variation of the lowest demand can be obtained by
integrating the green fractal between αg(f gmax) y αg

max.

Indices for the frontier points (αfrontier, f(α frontier)) between red and green
spectra

If αfrontier is higher next year than the previous, it means that an im-
portant part of the customer universe has increased its energy demand.
The following index can show this situation:

I5 ¼ αfrontier

Nevertheless, if f(αfrontier) goes up the next year, then the dimension
of the frontier fractal goes up, i.e. the fractality of the frontier is increas-
ing, which means that lower and higher demands are mixing together
in a geographical sense. The following index can show this situation:

I6 ¼ f αfrontier
� �

Spectral asymmetry

It can be seen in Fig. 10 that for the analyzed system the red spec-
trum is asymmetric. Then αr (f rmax) is located closer to αr

max than to
αr

min. This spectral asymmetry can be evaluated in the following way:

I7 ¼ αr f rmax

� �
−αr

min

� �
= αr

max−αr f rmax

� �� �

This index shows the ratio of the demand, inside the red fractal, i.e. of
the high demand, which is performed near its own maximum value (in
the case of red fractal, the heavy boxes,αr

min), vis a vis the demand close
to its ownminimum value (for the red fractal, the light boxes,αr

max). In



Fig. 15. Scattering at the right.

Fig. 16. Scattering at the left.
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this case, the asymmetry is for theα coordinate. And for the asymmetry
in the f (α) coordinate, we have:

I8 ¼ f rmax− f r ∝rmax

� �� �
= f rmax

Lower values of I8 show that customers with lower demand, inside
the red fractal, demand energy in the same ratio as the majority of the
customers of the red fractal, which means that for these customers
their f(α)s are not very different from fr(αmax).

Indices obtained by application of the thermodynamic algorithm and
information theory

The theory of multifractality can be read from two points of
view. Up to the moment we have related “α” to “Concentration” and
“f (α)” to “Dimension”. But another point of view, based in the as
called “Thermodynamic Algorithm” relates “α” to “Internal Energy”
and “f (α)” to “Entropy”, as the analogues in statistical mechanics. Here
it is important to consider the “notable point” (αentropic, f(αentropic))
of the spectrum, which is where f′(α) = 1 y f (α) = α. This point
has two useful meanings for electricity demand:

- From a purely fractal point of view, the subfractal Fαentropic is the
most self-similar of the spectrum, really the only self-similar one.

- By applying Information Theory, it is possible to assess that this
subfractal contains all the information about the probability mea-
sure of each box. Its dimension f(αentropic), which is called “Informa-
tion dimension” or “Entropic dimension” is the “best mean value”
(considering arithmetic, geometric, logarithmic, etc. mean values)
to synthesize in a single value the whole spectrum of multifractal
dimensions. The following indices can show this situation:

I9 ¼ αr f rmax

� �
−αentropico

I10 ¼ f rmax− f αentropico
� � ¼ f rmax−αentropico

These indices are really significant because they evaluate the devia-
tion of themaximumof the spectrum from its ownmean value, because
f rmax typifies the absolute majority of customers who have a high ener-
gy consumption, given by αr (f rmax).

Conclusions

We have proposed a new point of view to forecast the spatial
growth of the electricity demand. This new focus adds value to the
traditional tools in use by utilities, but does not replace them. As a re-
sult of the applied method, the customer demand analyzed has been
split into a “two-multifractal” (core urban zone with higher demand,
surrounded by a suburban zone with lower demand), with a frontier
between them, showing that the apparently random distribution of
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the demand has an internal structure only visible by using multifractal
analysis.

The obtained spectra show properties (stability, constant dimen-
sionality of the frontier, etc.) uncommon in the literature on fractals in
an empirical context.

We have presented indices to compare themultifractal distributions
in regular periods and to extrapolate the trends to the future.

The procedure could be improved from a geographic and demo-
graphic focus, by considering “urban models” (Willis, 2002) and “land
use models”, adjusted to the region where the utilities work. The final
model must include impact demands, distributed generation, and the
driving force behind the growth of the demand, perhaps using physical
analogies based on the thermodynamic algorithm.
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