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ABSTRACT 15 

        Environmental fate processes of neonicotinoid insecticides are of significant interest, given the 16 

serious threats these chemicals can pose to non-target organisms such as pollinators (e.g., bees). Direct 17 

photolysis was investigated using a laboratory photoreactor approximating full-spectrum sunlight to 18 

predict the aquatic fate of neonicotinoids. Quantum yields (ϕc) were 0.019±0.001, 0.013±0.001, 19 

0.0092±0.0005, 0.0022±0.0003 and 0.0013±0.0002 for thiamethoxam, clothianidin, imidacloprid, 20 

acetamiprid and thiacloprid, respectively. Based on these values, estimated half-lives were 0.2-1.5 days 21 

for different seasons in surface waters at temperate latitudes for thiamethoxam, consistent with the 0.98 22 

day half-life observed experimentally outdoors at Winnipeg, Manitoba, Canada (50°N) for 23 

thiamethoxam in summer. Light attenuation through shallow clear surface waters (e.g., by natural 24 

organic matter) indicated that photolysis of thiamethoxam at depths greater than 8 cm was negligible, 25 

which may help explain reports of their environmental persistence. 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 
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INTRODUCTION 36 

        Neonicotinoid insecticides are widely used in agriculture to protect against a variety of pests such 37 

as whiteflies, beetles and termites.
1
 Neonicotinoids act by selectively binding with the nicotinic 38 

acetylcholine receptor to disrupt neural transmission.
2
 They are applied as seed coatings or as foliar 39 

sprays, and released via seed leaching, spray drift, surface run-off, and wind or animal-mediated 40 

dispersal of contaminated pollen and nectar from treated plants.
3
 Consequently, they are widely 41 

detected in environmental media such as plants,
4
 soil and water.

5
 Neonicotinoids are of great 42 

environmental concern because they exhibit adverse effects on pollinators (e.g., bees),
1,6,7

 non-target 43 

invertebrates,
8
 vertebrates

9,10
 and even humans.

11
 Furthermore, the controversial nature of 44 

neonicotinoids and their possible link to major bee die-offs globally has increased pressure to phase out 45 

this class of insecticides,
12

 as exemplified by a recent two-year moratorium in Europe.
13, 14

 However, it 46 

is not clear if neonicotinoids are responsible for declines in bees, or if other variables are in play, as 47 

pollinating species can experience complex and confounding environmental stressors. That, combined 48 

with the paucity in data characterizing exposure via realistic field studies, makes it difficult to isolate 49 

the issue just to neonicotinoids.
12,14

 It is thus essential to understand the environmental processes 50 

controlling the fate of neonicotinoids to inform better decisions relating regulations of these 51 

insecticides.  52 

        Direct photolysis is an important factor affecting the environmental fate of many organic 53 

contaminants, including neonicotinoids.
15,16

 The quantum yield (ϕc) is a characteristic parameter 54 

defining how efficiently a compound degrades upon absorption of a photon,
15,17 

facilitating the 55 

modeling and prediction of direct photolysis rate constants (kp) and half-lives (t1/2).
17

 Although the 56 

photodegradation of neonicotinoids using either laboratory photoreactors or natural sunlight has been  57 

investigated,
16,18-20

 to our knowledge there exists no peer-reviewed literature reporting ϕc values under 58 

environmentally relevant conditions (i.e. λ>290 nm). Some internal reports,
21-29 

including those from 59 

the European Commission 
21-24

 and the U.N. Food and Agriculture Organization (FAO),
25-28

 report ϕc 60 
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values for acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam. However the 61 

experimental conditions and reliability of these values are unknown, and independent verification is 62 

required. For example, the p-nitroanisole (1×10
-5

 M)/pyridine (2.5×10
-3

 M) actinometer system, which 63 

could not provide a similar half-life of all target compounds (from 3.5 min to 254 h) and consequently 64 

correct photon flux monitoring, was used for the determination of ϕc of several neonicotinoids in 65 

various unpublished phototransformation experiments.
29 66 

        Thus, our objective was to determine ϕc values of the frequently used neonicotinoid insecticides 67 

thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid in water with a laboratory 68 

photoreactor under environmentally relevant light conditions. These results were further evaluated (for 69 

thiamethoxam only) under natural sunlight to investigate indirect photolysis and biotic degradation 70 

processes, as well as effects of light attenuation through the water column. This will allow prediction of 71 

the persistence of these chemicals in surface waters, and aid in ascertaining exposure levels to 72 

vulnerable non-target species (e.g., pollinators). 73 

 74 

MATERIALS AND METHODS 75 

        /Details on chemicals and reagents used, including structures and basic physical-chemical 76 

parameters of the studied neonicotinoids, are listed in Supporting Information (SI). All irradiations 77 

were performed using a Rayonet Merry-Go-Round Photochemical Reactor (model RPR-100, The 78 

Southern New England Ultraviolet Company, Branford, CT). The photoreactor had 16 medium-79 

pressure mercury lamps with spectral emission ranging from 250 to 400 nm, centered at 300 nm 80 

(Figure S1 and Table S2).
30

 Cylindrical Pyrex tubes (50mL) which filtered wavelengths <290 nm were 81 

used as irradiation vessels.  82 

        The p-nitroanisole/pyridine and p-nitroacetophenone/pyridine actinometer systems
31

 were used to 83 

monitor photon flux in the photoreactor, with 4.6×10
-5

 M p-nitroanisole and 0.01 M pyridine for ϕc 84 
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determination of thiamethoxam, clothianidin and imidacloprid, while 6.0×10
-5

 M p-nitroacetophenone 85 

and 0.01 M pyridine were used for experiments with acetamiprid, thiacloprid and the outdoor 86 

experiment of thiamethoxam. Actinometers were included in all irradiation and dark experiments.  87 

        Triplicate laboratory irradiations (10 mg/L, high concentrations were used to facilitate 88 

photoproduct identification) were conducted with 40 mL solutions of each individual insecticide in 50 89 

mM borate buffer at pH 7.4 in Pyrex tubes. Given the pKa values for these five neonicotinoids are well 90 

above or below (>2 pH units) this pH (Table S1),
32

 each compound is present only as a single species 91 

during the duration of these experiments. Dark experiments were carried out in an oven that matched 92 

the maximum temperature (45◦C) and time reached in the photoreactor.
30

 Experiments were performed 93 

in triplicate over 45 min for thiamethoxam, clothianidin and imidacloprid, and 36 h for acetamiprid and 94 

thiacloprid. Chemical concentrations were determined using high performance liquid chromatography 95 

(HPLC) with diode array detection, while photoproducts were measured using HPLC tandem mass 96 

spectrometry and time-of-flight high resolution mass spectrometry (QTOF) as detailed in SI.  97 

        Detailed methods for calculating molar absorptivity and ϕc (290-360 nm) using our actinometers, 98 

as well as natural sunlight estimations (SI) were published previously.
17,30

 The solar irradiance 99 

parameter (Lλ) used for the t1/2 estimation of neonicotinoids under sunlight was obtained from the 100 

literature.
33

 101 

         Degradation of thiamethoxam under natural sunlight conditions was assessed at the Prairie 102 

Wetland Research Facility at the University of Manitoba in July 2014. Details of this facility are 103 

published elsewhere.
34

 Briefly, sealed Pyrex tubes containing thiamethoxam and nanopure water were 104 

deployed in three randomly-selected 3500 L mesocosms containing approximately 2000 L of water, 105 

natural uncontaminated sediments, macrophytes, and invertebrates typical of Canadian Prairie wetlands, 106 

at different depths (0 cm, 8 cm, 18 cm and 28 cm). Photon flux was measured using p-107 

nitroacetophenone/pyridine at these depths, along with dark controls as above. In order to clarify 108 
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whether other environmental degradation processes such as non-photolytic abiotic transformation (e.g., 109 

hydrolysis), microbial biotransformation and indirect photolysis were involved in removing 110 

thiamethoxam during the experiment, other control tubes were deployed in triplicate (see SI for details).  111 

   112 

RESULTS AND DISCUSSION 113 

Photolysis kinetics and quantum yields 114 

        The photolysis of neonicotinoid insecticides, which absorb photoreactive light (Figure S2) 115 

followed pseudo-first-order kinetics (Figure 1). No loss of these insecticides was observed in the dark 116 

(Figure 1). Imidacloprid, clothianidin, thiamethoxam, acetamiprid, and thiacloprid exhibited direct 117 

photolysis half-lives of 12±0.4 min, 12±1.1 min, 22±1.3 min, 26±1.0 h and 42±1.6 h, respectively 118 

(Figure 1). Direct photolysis ϕc were calculated as 0.019±0.001, 0.013±0.001, 0.0092±0.0005, 119 

0.0022±0.0003 and 0.0013±0.0002 (290-360nm) for thiamethoxam, clothianidin, imidacloprid, 120 

acetamiprid and thiacloprid, respectively (Figure 1). The averaged photon flux of the photoreactor 121 

ranged from 8.8×10
14

 to 1.1×10
15 

photons×cm
-2 

sec
-1

 over the course of the entire experiment. The half-122 

life for thiamethoxam under natural sunlight (300-360nm) at the surface of the mesocosm water was 123 

0.98±0.03 days (Table 1 and Figure S3A). In comparison with the surface water photodegradation, the 124 

light flux decreased 89% to 7.9×10
13

 and 98% to 1.1×10
13

 photons×cm
-2 

sec
-1

 at depths of 8 cm and 18 125 

cm, respectively. 
 

126 

        Given the paucity of data existing for published neonicotinoid quantum yields, it was necessary to 127 

rely on the few unpublished values from technical documents to place our results in context. The ϕc of 128 

direct photolysis of thiamethoxam in water was reported as 0.013±0.002 in an unpublished European 129 

Commission document (experimental conditions unknown),
21

 similar to our result (0.019). The half-life 130 

of thiamethoxam was predicted to be 0.20-1.5 days at 50°N (Table 1) for different seasons based on the 131 

measured ϕc in the present study, which corresponds well with our measured half-life. Discrepancies 132 
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are possibly due to specific weather conditions (e.g., cloudy) during the outdoor irradiations. The very 133 

similar half-life in poisoned tubes in mesocosms of 1.1±0.2 days (Figure S3B) indicates that direct 134 

photolysis dominated transformation processes for thiamethoxam. However, screening of UV light in 135 

the mesocosm water column (e.g., by natural organic matter; total organic carbon was measured as 136 

16.5±3.1 mg/L in the present study) resulted in considerably longer half-lives at depth.
35 

The pseudo-137 

first order rate constant for thiamethoxam in tubes at the surface (0.71±0.02 d
-1

) of the mesocosm tanks 138 

decreased to 0.02±0.008 d
-1

 and 0.01±0.003 d
-1

, respectively, at 8 and 18 cm depth (Figure S4). In 139 

contrast, FAO
25

 reported a photolytic t1/2 for thiamethoxam of 2.3-3.1 days in phosphate buffered 140 

aqueous solutions (pH=5) using xenon arc light irradiation. That report noted that samples were 141 

exposed to light for 12 h at an average intensity of 410 W/m
2
 per day followed by 12 h dark intervals 142 

with a total reaction time for 30 days.
25

 Moreover, Bonmatin et al.
32 

estimated that the aqueous 143 

photolysis t1/2 of thiamethoxam under sunlight at pH 7 to be 2.7 days.  However, details of 144 

experimental conditions were not clear. Experimental designs that were inconsistent (e.g., different 145 

light sources) and/or problematic (e.g., involvement of cosolvent and inappropriate actinometer) may 146 

help explain the variability in ϕc and t1/2 reported throughout the peer-reviewed and grey literature for 147 

environmental contaminants, a topic that has been fully reviewed previously.
15

 148 

        An outdoor sunlight experiment conducted in March 2012 in Zürich (47°
 
N latitude) reported a ϕc 149 

= 0.0073 and t1/2 = 3.3 h for clothianidin,
29

 similar to the ϕc value reported by European Commission 150 

(0.014)
22

 and measured in the present study (0.013±0.001).  The outdoor t1/2 of clothianidin was 151 

predicted as 0.35-3.3 days for different seasons at 50°
 
N latitude based on our measured ϕc. FAO

26
 152 

reported a t1/2 of 0.6 days of summer solar exposure for clothianidin at Phoenix, Arizona (33°N 153 

latitude). 154 

        Studies by Redlich et al.
36

 report laboratory measured ϕc values for imidacloprid determined at 155 

wavelengths <290 nm, which are not environmentally relevant. Von Gunten
29

 conducted quantum yield 156 
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measurements for imidacloprid under natural sunlight in March 2012 in Zürich and observed a ϕc = 157 

0.0055 and t1/2 = 2 h, comparable with our results (ϕc = 0.0092; Figure1 and Table 1). The 158 

environmental t1/2 of imidacloprid in surface waters at 50°N latitude was calculated as 4.2 h at the 159 

equinox,
27

 whereas our estimation was 0.36 d (8.6 h) and 0.83 d (19.9 h) in spring and autumn, 160 

respectively.  161 

        Again, good agreement is observed when comparing our results to those of von Gunten
29

 who 162 

reported quantum yields from outdoor sunlight experiments (March 2012 in Zürich). Von Gunten
29 

163 

observed a ϕc = 0.0046 and t1/2 = 254 h
 
for acetamiprid under natural sunlight, which agree reasonably 164 

well with our values: ϕc = 0.0022 and t1/2 (predicted) = 9.7 days in summer (232 h). In contrast, the 165 

study by the European Commission reported the ϕc of acetamiprid as 0.10 at λ>290 nm (experiment 166 

condition unknown),
 23

 which was much higher than our results (0.0022) and those values from von 167 

Gunten (0.0046).
29

 However, the t1/2 determined in this European Commission report (34 days under 168 

xenon lamp, irradiation: 12 hours/day)
 23

 was comparable with our estimation (9.7-68 days in different 169 

seasons), again pointing to experimental inconsistencies surrounding quantum yield determinations  170 

        The FAO
28

 and European Commission
24

 reported the ϕc of thiacloprid as 0.00035 and estimated 171 

an 80 days t1/2 with simulated sunlight and 324 days under natural sunlight at Phoenix. Their ϕc was 172 

lower than our measured number (0.0013±0.0002) and the t1/2 was higher than our results (8.8-60 days), 173 

but the reasons were not clear. 174 

         175 

Photoproduct identification 176 

        It was evident from the HPLC-MS/MS analysis that the irradiations generated photoproducts and 177 

the abundance of these products increased with reaction time (Figure S5-S9). The mass spectra from 178 

these total ion chromatograms (TIC) were used to identify potential photoproducts, with further 179 

analysis, structural elucidation, and confirmation done using QTOF. It should be noted that 180 

chromatographic separation of photoproducts was neither attempted nor necessary for the purposes of 181 
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this study, and thus, single chromatographic peaks observed in Figures S5-S9 may represent multiple 182 

photoproducts. Two photoproducts of thiamethoxam were identified, corresponding to m/z 247.0417 183 

and 168.0767 (Table S3, Figures S10 and S11). Both of these masses and proposed structures 184 

correspond to major photoproducts previously identified for thiamethoxam.
20 

Two photoproducts were 185 

identified for clothianidin, m/z 206.0149 (Figure S12) and m/z 205.0307 (Figure S13), both previously 186 

reported by Gong et al.,
18

 however the proposed structure for m/z 206 in the current study differs.
 
 187 

QTOF evidence from the fragmentation pattern of the m/z 206 ion supports our proposed structure 188 

(Figure S12). Please see SI for further details. Three major photoproducts were identified for 189 

imidacloprid, two of which are strongly supported by the literature and a third that has not been 190 

previously reported (Table S3). Photoproducts m/z 212.0586 and 211.0741 and their corresponding 191 

structures (Figures S14 and S15) have been observed multiple times in the literature.
36-39

 The 192 

imidacloprid photoproduct m/z 189.0769 was observed for the first time in the present study (Figure 193 

S16). However, it is not clear what the structure of this observed ion is.  194 

        Photoproduct identification for both acetamiprid and thiacloprid was markedly more challenging 195 

than the other neonicotinoids, likely because of their relatively recalcitrant nature towards photolysis. 196 

Acetamiprid showed a photoproduct at m/z 205.1081 that corresponded to a logical structure shown in 197 

Figure S17. Alternatively, the structure of the thiacloprid photoproduct at m/z 235.0646 could not be 198 

confidently determined. Three plausible, very similar structures are proposed in Figure S18. Both of 199 

these photoproduct masses have not been previously reported in the literature. It should be noted that 200 

masses for acetamiprid and thiacloprid were observed in the irradiated samples at exactly 4 mass units 201 

greater than the parent masses, 227.0905 and 257.0469, respectively (Figures S17 and S18). No 202 

plausible chemical formula information was generated from the QTOF software and thus structure 203 

elucidation was not attempted, however this may warrant further investigation.  204 

 205 

IMPLICATIONS 206 
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        Thiamethoxam, clothianidin and imidacloprid will quickly undergo direct photolysis in surface 207 

waters, resulting in decreased exposure of non-target organisms consuming or exposed to water at these 208 

depths. However, light screening in waters can rapidly decrease photodegradation, as evidenced by the 209 

significant light attenuation observed in our deployments in mesocosm waters, which were clear in 210 

appearance.  While those experiments were for thiamethoxam only, it is very likely that other 211 

neonicotinoids would be similarly affected. This would increase exposure of biota to these chemicals, 212 

and may help to explain their observed persistence in shallow surface waters.
5,32

 In any event, 213 

acetamiprid and thiacloprid are relatively stable toward sunlight degradation in aquatic systems.   214 

 215 
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 330 

 331 

Figure 1 First-order direct photolysis (A and B) and quantum yield (ϕc) (C) of neonicotinoid 332 

insecticides in water for irradiations in a laboratory photoreactor. Error bars in (A) and (B) represent 333 

standard deviations (SD) of the mean. The correlation coefficients (r
2
) for the pseudo first-order kinetic 334 

plots ranged from 0.982-0.994. Average half-lives and ϕc of each neonicotinoid insecticide are shown 335 

in brackets in the legend. Errors in (C) were calculated through error propagation. 336 
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Table 1 Estimated photolysis rate constants (kdcE) (days
-1

) and half-lives (t(1/2)E) (days) for 348 

neonicotinoid insecticides in surface water at 50°
 
N latitude for spring, summer, autumn and winter by 349 

sunlight on clear days. 350 

Compounds 

Spring   Summer Autumn Winter 

kdcE t(1/2)E kdcE t(1/2)E kdcE t(1/2)E kdcE t(1/2)E 

Thiamethoxam 2.17 0.32 3.46 (0.71)
a
 0.20 (0.98)

a
1.10 0.63 0.46 1.49 

Clothianidin 1.31 0.53 1.98 0.35 0.56 1.23 0.21 3.31 

Imidacloprid 1.94 0.36 2.93 0.24 0.84 0.83 0.31 2.22 

Acetamiprid 0.04 16.5 0.07 9.67 0.02 29.7 0.01 67.9 

Thiacloprid 0.05 14.3 0.08 8.75 0.03 26.6 0.01 60.3 

         

a
 Numbers in brackets were measured under natural sunlight in Winnipeg, Manitoba, Canada in July 351 

2014. 352 
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