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The spread of biofuels has generated controversy at international, national and regional levels due to the environ-
mental, economic and social impacts that its production and consumption can cause. Recently, the Spanish
government has been promoting the production of biodiesel in industrial plants located in Spain and other EU
countries. These developments are expected to stimulate the cultivation of rapeseed in the EU to the detriment
of extra-EU imports of biodiesel mainly based on soybean oil from Argentina, which has been one of the main
suppliers of biodiesel in Spain for years. As a result, the environmental impacts produced throughout the life
cycle of biodiesel consumed in Spain could be radically affected. In this context, the environmental impacts of bio-
diesel produced in Spain and Argentina with rapeseed cultivated in Spain and soybean cultivated in Argentina
were compared under certain growing conditions using life cycle assessment (LCA). Consequential and attribu-
tional approaches were compared under the ReCiPe method to test potential biases. The results showed that the
biodiesel produced with Argentinean soybean oil had fewer environmental impacts than biodiesel produced
with Spanish rapeseed oil. Seed production (and fertilization) was the process (and sub-process) that generated
the greatest environmental burdens, and it is an area in which improvement is necessary in order to increase
sustainability, particularly with regard to Spanish rapeseed-based biodiesel.

© 2016 Published by Elsevier Inc. on behalf of International Energy Initiative.
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Introduction

Environmental issues have been a key driver for the establishment of
policies to promote biofuels in the EU. The European Energy Directive
2009/28/EC (EU-RED) on the promotion of the use of energy from
renewable sources (European Commission, 2009), which established a
10% target for energy from renewable sources in transport by 2020, re-
stricts public support only to those biofuels and bio-liquids, produced
within or outside the EU, which meet a series of sustainability criteria.
In its environmental dimension, it includes requirements for GHG
emissions, biodiversity, land use changes and good farming practises.
These same criteria were adopted into Spanish law by Royal Decree
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1597/2011 (MITYC, 2011). The sustainability criteria set by these
regulations mainly affect the agricultural phase in the production of
rawmaterials for use in biofuels. This means that farmers play a crucial
role in biofuel sustainability. However, sustainability requirements
were not needed in order to comply with biofuel targets in Spain until
the 1st January 2016, because of themoratorium on biofuel sustainabil-
ity established by Royal Decree-Law 4/2013 (Jefatura del Estado, 2013).

In 2011, 45.3% of biodiesel consumed in Spain was produced in
Argentina (CNE, 2013), mainly with soybean crops (Glycine max),
whichwere cultivated in extensive areas usingmonoculture techniques
but adhering to the ‘Round Table on Responsible Soy EU RED’ (RTRS)
scheme for demonstrating compliance with the sustainability criteria
under the EU-REDDirective. By contrast, less than 2% of the total biodie-
sel consumed in Spain (produced both inside and outside Spain) was
produced with rapeseed (Brassica napus) (CNE, 2013). In 2012, the
Spanish government enacted Order IET/822/2012 (MINETUR, 2012a),
and IET/2736/2012 (MINETUR, 2012b) which promotes biodiesel pro-
duction in European plants. In 2014, the Spanish Ministry of Industry,
Energy and Tourism approved an annual production of 4.8 million
tonnes of biodiesel for 2014 and 2015 in 37 industrial plants located
in the EU, 23 of which are in Spain (MINETUR, 2014). This has undoubt-
edly affected the biodiesel market, and consequently, the sustainability
of biodiesel consumed in Spain. It has resulted in a decrease in imports
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and an increase in domestic production (Fig. 1). In fact, biodiesel domes-
tic production has already led to a significant expansion of rapeseed
(B. napus) oil production in Europe in recent years (Malins, 2013). As
a consequence, in 2013, the consumption of soy-based biodiesel in
Spain decreased by 18.6%, whereas the consumption of rape-based
biodiesel increased by 9.7% (CNMC, 2015a).

As a result of new biofuel policies, in future years, a notable increase
in first generation biodiesel is expected in Spain (CNMC, 2015b), aswell
as an increase in rapeseed production (MAGRAMA, 2015a). Therefore,
it seems that great uncertainty surrounds the future of sustainable
biofuels used in Spain.

As Milazzo et al. (2013) suggest, only demonstrably sustainable
feedstock, which complies with sustainability criteria, should be used
and promoted by governments in biodiesel production. Therefore, we
believe that an in-depth analysis is essential to eliminate uncertainty
regarding biodiesel sustainability in Spain so that governments can
promote the most sustainable feedstock. Life cycle assessment (LCA) is
a widely used technique to analyse the environmental impacts of
goods or services. In the scientific community, there is a broad consen-
sus on this being one of the most appropriate methods for assessing
environmental impacts associated with the production of biofuels
(Requena et al., 2011). LCA allows for the objective comparison of
environmental impacts that could potentially be caused by two or more
products used for the same purpose. It can be conducted throughout
the whole life cycle of a product or service, from production through to
consumption, or just for a certain part of the life cycle.

LCA has recently become a key methodology in bioenergy gover-
nance, seeking to incorporate externalities that havemajor implications
for long-term sustainability (McManus et al., 2015). It has been used to
guide public decision-making toward sustainable production and con-
sumption of biofuels in countries such as Italy (Blengini et al., 2011;
Fazio and Monti, 2011) or Malaysia (Yee et al., 2009). The impact of
EU biofuel policies on agricultural production, imports and changes in
land use has also been examined both at international level (Banse
et al., 2011) and in Spain (Lechon et al., 2011). However, most previous
LCA studies for rapeseed-based biodiesel do not delve into the specific
conditions of production, such as the cultivation techniques or
geographical variability (farming locations), which could change the re-
sults significantly (Kim and Dale, 2009). This is an additional advantage
of the present study, since edaphological and climatic data from the
specific locations have been incorporated in the LCI (life cycle invento-
ry) to assess the potential environmental impacts. The same is true for
studies of soybean-based biodiesel LCA that have been carried out to
date (e.g., Hou et al. (2011) and Panichelli et al. (2009) used mean
data in the LCIs for countries such as China and Argentina, respectively).
Moreover, most previous studies were limited to energy and green-
house gas (GHG) emissions, thus excluding other environmental
impacts that are relevant throughout the life cycle of the products.
Fig. 1. Biodiesel balance in Spain: exports, imports and
With all this in mind, the objective of this study is to compare the
environmental impacts [climate change (CC), ozone depletion (OD),
human toxicity (HT), photochemical oxidation formation (POF), fossil
depletion (FD), terrestrial acidification (TA), freshwater and marine
eutrophication (FE and ME), agricultural land occupation (ALO) and
natural land occupation (NLO)] of Argentinean soybean-based biodiesel
with biodiesel produced in Spain, both with Argentinean soybean oil
and with Spanish rapeseed oil. In the assessment we take into account
the specific cultivation techniques, transport of biodiesel or feedstock
and geographical variability (Spain or Argentina) of biodiesel produc-
tion. Only after analysing the environmental burdens of the different
systems will it be possible to select the most efficient solutions for
improving the sustainability of the biodiesel consumed in Spain. The
ultimate aim of this study is to determine whether policies that have
been recently enacted to promote biodiesel production in Spain are
improving environmental protection, which is the main objective of
the promotion of biofuels in the EU, or whether they are in fact having
the opposite effect.

Material and methods

Goal and scope

The main objective of the study was to analyse the environmental
burdens of biodiesel production systems in Spain in order to contribute
to a more efficient design of policies which promote environmentally
friendly biodiesel production systems.

The environmental effects of rapeseed-based and soybean-based
biodiesel production for the Spanish market were calculated and
evaluated using the LCA methodology for three alternative pathways:

A) Argentinean soy methyl ester (ASME): soybean-based biodiesel
produced entirely in Argentina and exported to Spain.

B) Spanish soy methyl ester (SSME): soybean-based biodiesel pro-
duced in Spain (transesterification) using soybean oil imported
from Argentina.

C) Spanish rape methyl ester (SRME): rapeseed-based biodiesel
produced entirely in Spain.

The systemboundaries included from the rawmaterial extractionup
to the factory gate. This study analyses the impacts generated in the
cultivation of the raw materials (Argentinean soybean and Spanish
rapeseed), grain screening and drying, oil extraction and refining,
transportation (of soybean oil or biodiesel from Argentina to Spain)
and biodiesel production (methyl transesterification). Therefore, in
this study, all the input and output flows of materials and energy up
to the factory gate were taken into consideration.
domestic production (m3) Source: CNMC, 2015a.
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We used energy content (GJ) as the functional unit (FU), adopting
the lower calorific value specified in the EU-RED Directive for biodiesel
(37 MJ kg−1).

The software ‘Simapro 8.0.4.30’ and the database ‘Ecoinvent v3.1’
(Ecoinvent, 2014) were used for the environmental assessment, taking
into consideration the standards set out in ISO 14040 (2006) and ISO
14044 (2006), which specify the general framework, principles and
basic requirements for conducting LCA studies.
Life cycle inventory (LCI)

Data for the life cycle inventory (LCI) were collected from different
sources. Data sources are specified in Appendix A.

The three production systems considered (ASME, SSME and SRME)
were structured in two main phases (agricultural and industrial) for
the inventory analysis, each one including processes, sub-processes
and flows, in order to facilitate the study and interpretation of the re-
sults (Fig. 2). The ‘seed production’process (agricultural phase) includes
the sub-processes: ‘use of farmmachinery for agricultural work’, ‘appli-
cation of pesticides’, ‘application of fertilizers’ and ‘production of seeds
for sowing’. ‘Land use’ (occupation and transformation) was considered
Fig. 2. Flow diagram for the th
as an input from nature. The industrial phase includes: ‘grain screening
and drying’, ‘oil extraction’, ‘oil refining’ and ‘transesterification’.

Agricultural phase
The outputs from this phase are the seeds needed to produce the oil.

The yields obtained in the trials were 2800 kg ha−1 of rapeseed in Jerez
de la Frontera, Southwest Spain and 3320 kg ha−1 of soybean in
Pergamino, Argentina. These data were compared with themost recent
data available on average national yields. The average yield of Spanish
rapeseed in 2013 was 2650 kg ha−1(MAGRAMA, 2015a), while the av-
erage yield of Argentinean soybean in 2015 was 3176 kg ha−1 (SIIA,
2015). Therefore, our data do not differ greatly from the national
averages.

Use of farm machinery for agricultural work
Inputs. A specific process was executed for agricultural machinery in

the cultivation of rapeseed in Spain, with a FU of 1 ha (Appendix B). The
use ofmachinery in the soybean crop in Argentina ismuchmore limited
because of the no-till farming (NT) system, an agricultural technique in
which the soil is not disturbed by tillage. The farmwork and agricultural
machinery required per hectare in the cultivation of soybean in
Argentina were taken from Panichelli et al. (2006) (Appendix B).
ree production systems.



Table 4

Table 3
Emissions from mineral fertilizer application (mass fraction of emitted substance per nu-
trient applied).

Substance Compartment Emission factor Source

NH3 (%) Air 4% N Audsley et al. (2003)
N2O (%) Air 1% N De Klein et al. (2006)
NOx (%) Air 21% N2O Nemecek and Kägi (2007)
P (kg/ha*a) Groundwater 0.07 Nemecek and Kägi (2007)
P (kg/ha*a) Surface water 0.175*(1+ 0.0025[P2O5]) Nemecek and Kägi (2007)
SO4 (%) Groundwater 72% S Riley et al. (2002)

Table 1
Pesticide emission fraction in the analysed case studies (g kg−1).

Trifluraline emission in rapeseed Glyphosate emission in soybean

fair 92.5 200.4
fsw 4.7 2.2
fgw 14.6 4.2

fair: fraction of the applied pesticide emitted to the air.
fsw: fraction of the applied pesticide emitted to surface waters.
fgw: fraction of the applied pesticide emitted to groundwater.
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Outputs. Air emissions from the combustion of diesel and heavy
metal emissions to the soil from the abrasion of the tractor wheels
were included in the inventory as outputs in the rapeseed study case
(see Appendix B for detailed calculations). These calculations were not
needed for the soybean study case, since they were included in the
ecoinvent processes that were used.

Application of pesticides. In the rapeseed crop trials carried out in Jerez,
1.5 l ha−1 of Trifluraline at a concentration of 48 g l−1, were applied
(IFAPA, 2011a). Such treatment is applied simultaneously at the time
of sowing. For the cultivation of soybean in the Argentinean Pampa,
the most common herbicide used contains glyphosate at a concentra-
tion of 48 g l−1. According to themanufacturers of this type of herbicide,
in large soybean extensions, two applications of glyphosate, with an av-
erage dose of 22.5 l ha−1 in each application (mixing glyphosate with
water at 10% concentration), are needed once the crop has emerged.
The main form of application is spraying from aircraft over large areas
of land. The production of pesticides and their transport to the applica-
tion site were incorporated as inputs for both crops in the inventory of
pesticides. The procedure for calculating these inputs is summarized
in Appendix C.

With regard to emissions from pesticide application, in recent years,
complex mathematical models called ‘fate analyses’ have begun to be
used frequently in LCAs of agricultural systems to evaluate the transport
of agrochemicals by environmental compartment. Fate analysis models
give more precise information than emission factors. In this research,
the PestLCI model developed by Birkved and Hauschild (2006) was
used to calculate pesticide emissions. This model quantifies the fraction
emitted to the atmosphere, surface water and groundwater from the
following equation:

fem ¼ mem=mappl ¼ fair þ fswþ fgw ð1Þ

where fem is the fraction of pesticide that is emitted into the surrounding
environment, mem is the mass of pesticide emitted to the environment,
mappl is the mass of pesticide applied, fair is the fraction of the applied
pesticide which is emitted to the air, fsw is the fraction of pesticide re-
leased to surface waters and fgw is the fraction emitted to groundwater.
Each of these fractions is calculated through a complex series of equations
which are fully described by Birkved and Hauschild (2006).

The PestLCImodel was implemented on an Excel spreadsheet which
includes a database with the physical and chemical properties of 69
pesticides and different types of application (incorporation into the
soil, spray, etc.). The model parameters are related to crop type and
stage of development, as well as agronomic and climatic variables. The
Table 2
Mass fraction of nutrients contained in the fertilizers andmass of fertilizer applied (kg/ha).

Nutrient content of the
fertilizer (%)

Mass of fertilizer
applied (Kg/ha)

Fertilizer type N P2O5 K2O S Soy Rape

Urea 46 – – – 72.7 149.3
Triple superphosphate – 48 – 1 44.9 86.5
Potassium sulphate – – 52 18 34.5 81.8
Potassium nitrate 14 – 44 – 19.5 4.5
PestLCI database gives soil and climate data for Danish conditions. It
was therefore necessary to collect data under the specific conditions of
the analysed case studies to be incorporated into the model. Climate
and soil data were taken from IFAPA (2011b) and Monge et al. (2008)
for the rapeseed crop in Jerez and from INTA (2013) and INTA (2002)
for the soybean crop in Pergamino. Table 1 shows the emission of active
substances in the pesticides into the different areas of the environment,
which were calculated with PestLCI and inserted into SimaPro.

Application of fertilizers. In both case studies, a rational fertilization of the
crops was analysed. Rational fertilization is understood to mean the
fertilization required in order to return to the soil the nutrients taken
out by previous crops (García-Serrano Jiménez et al., 2010). The LCA
of the fertilization of the two case studies analysed was studied by
Fernández-Tirado et al. (2013). The inputs and outputs were taken
from the LCI of that study. In both case studies, it is assumed that the
stubble is left on the field, since this is a common practise for the sys-
tems analysed in both study areas. Thereby, the stubble contributes to
the replacement of nutrients in the soil, after the processes of humifica-
tion and mineralization. In order to carry out a rational fertilization,
firstly, the annual loss of nutrients, mainly due to the removal of nutri-
ents by the grain was calculated. Secondly, the annual rates of nutrient
replacement from the stubble to the soil were estimated. Finally, the
nutrient requirements to maintain the amount of nutrients constant
were calculated, in order to balance these with mineral fertilizer.
Table 2 shows the four common commercial fertilizers used in this
study, their typical nutrient composition and themass of fertilizer applied.

Regarding the emissions, Table 3 shows the emissions factors which
were selected for the LCI of this research for the application of mineral
fertilizers and their literature sources.

Moreover, the packaging of fertilizers in 50 kg LDPE bags has been
taken into account. Aweight of 23 g for every bagwas taken into consid-
eration, as was its recycling.

Production of seeds for sowing. The seed is produced and processed prior
to planting. In such processes, three inputs were taken into consider-
ation. Firstly, the above-mentioned production process of seed cultiva-
tion itself was included in our calculations. While 7 kg of seeds are
needed to grow one hectare of rapeseed (IFAPA, 2011a), 75 kg are need-
ed to grow one hectare of soybean (Panichelli et al., 2006). Secondly, the
transport needed to bring the seeds from the field to the processing
Impact categories and indicator units at midpoint.

Impact category Indicator unit

Climate change CC kg (CO2 to air)
Ozone depletion OD kg (CFC-11 to air)
Terrestrial acidification TA kg (SO2 to air)
Freshwater eutrophication FE kg (P to freshwater)
Marine eutrophication ME kg (N to freshwater)
Human toxicity HT kg (14DCB to urban air)
Photochemical oxidant formation POF kg (NMVOC to urban air)
Agricultural land occupation ALO m2 yr (agricultural land)
Fossil depletion FD kg (oil)

Source: Goedkoop et al., 2013.



Table 5
Mass, economic and energy allocation factors used in the attributional approach.

Allocation

Production
(tonnes)

Price
(USD/t)

Lower calorifica

value (MJ/kg)
Mass Economic Energy

Rape oil 1025 781 37.8 39% 74% 67%
Rape mealb 1574 270 18.7 61% 26% 33%
Total 2599 1051 56.5 100% 100% 100%
Soy oil 1025 778 36.6 19% 65% 69%
Soy mealc 4333 423 16.3 81% 35% 31%
Total 5358 1201 52.9 100% 100% 100%

a Lower calorific values for rape meal and soy oil: BIOGRACE (2015); for soy meal
Castanheira et al. (2015); and for rape oil Grau et al. (2013).

b 34%, Hamburg, f.o.b. ex-mill (FAO, 2015).
c 45/46% Argentinean c.i.f. Rotterdam (YCHARTS, 2015)
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plant and, once processed, to bring them back to the field was also in-
cluded. The selected truck is considerably heavier for the soybean crop
(over 32 t) than for the rapeseed crop (7.5–16 t) (Gasol et al., 2007),
not only because soybean farmers requiremore seeds per hectare, as in-
dicated above, but also due to the economies of scale which generally
exist in the soybean plantations of Argentina. We took a standard
distance of 15 km between the field and the plant, in accordance with
the standard distance used by Nemecek and Kägi (2007) and Jungbluth
et al. (2007). Finally, the energy used to process the seed is calculated in
the same way as in Gasol et al. (2007), i.e. 58 kWh per tonne of seed.

Land use
Land occupation. The term ‘land occupation’ refers here to the agri-

cultural area required to produce the grain needed to produce the
amount of biodiesel equivalent to the same functional unit (1 GJ) and
duration (1 year). The industrial area is not significant in comparison
with the agricultural area and was not taken into account. Whereas
261 m2 are needed to produce 1 GJ of SRME, 467 m2 are needed to
produce 1 GJ of ASME and SSME. These values are so different because
soybean has a very low oil content, meaning that large areas of land
are required to obtain the same amount of biodiesel.

Land transformation. Soils represent a large sink of organic carbon
and land transformation can induce GHG emissions due to changes in
carbon stocks. Land transformation can occur for various different rea-
sons, such as crop change, crop intensification or land use change
(LUC). Moreover, LUC is divided into direct land use change (dLUC),
meaning the change of use of the piece of land occupied by the crop,
and indirect land use change (iLUC), meaning the change of use of
areas other than cropland itself.

In this study, it is assumed that agricultural production increases by
area expansion and not by intensification. However, dLUC has not been
considered, since the crop is expected to occupy an existing cropland, so
the use is still agricultural production. Therefore, in terms of dLUC, there
is no land use change but there is crop change, i.e. there is no transfor-
mation to arable land but rather occupation of non-irrigated arable
Fig. 3. Environmental impacts of ASME (Argentinean soy methyl ester), SRME (Spanish rape
(H) method and the consequential approach.
land by the energy crops. Due to the ‘greening’ requirements of the
EU's Common Agricultural Policy, crop diversification is expected to
increase in Europe for farmers to qualify for agricultural subsidies. In
Andalusia, the ‘RAEA-Biofuels’ project conducted by IFAPA recently
confirmed in tests that rapeseed produces high yields (IFAPA, 2011a)
and it is expected to continue spreading (MAGRAMA, 2015a). A change
of crop is anticipated from wheat, the grain that occupies the greatest
area in Andalusia, to rapeseed, in wheat–rape rotations, due to the
high yields that this rotation produces (García de Tejada, 2015) and
this was assumed in the SRME scenario. In Argentina, the area sown
with soybean has increased noticeably since the end of the 1990s,main-
ly in the Pampa region, because of its bioclimatic suitability for this crop.
In the season of 1996–1997, the soybean area was similar to the wheat
area, whereas in 2012, the soybean area was four times the wheat area
(OSAS, 2015). Hence, the same assumption (conversion from wheat)
was made for the ASME and SSME scenarios. Moreover, the iLUC effect
was taken into account through displacing the areas cultivated with
wheat in Argentina or Spain to other areas, assuming transformation
to arable land.

Furthermore, carbon loss from iLUCwas estimated at 2.85 tmC/ha/year
over a 20-year time horizon, i.e. it was assumed that the land would be
used for over 20 years for biofuel production. In order to calculate this,
first a conversion factor of 57 t C/ha was taken from IEEP (2011),
based on an average of the IPCC default data (IPCC, 2006). Then, it was
annualized over a 20-year time horizon.

Transport
Once harvested, the seeds must be transported to the plant. In

Argentina, 85% of the harvest is moved by lorries, which carry about
30 t. Therefore, the chosen vehicle to bring seeds to the plant (ASME
and SSME scenarios) is a lorry weighing 16 to 32 t. The technology of
the type of lorry chosen was the one which complies with the Euro III
standard, as it is the most abundant type of lorry in the Argentinean
fleet. The same type of vehicle was chosen to transport the rapeseed
harvested in Spain (SRME scenario), since the Euro III technology is
also themost abundant in Spain (Fernández-Tirado et al., 2013). Finally,
the transport processes carried out in every scenario were described.

In the ASMEpathway, the seeds are transported by road a distance of
134 km, which is the current average distance between the growing
area (Department of Pergamino in the province of Buenos Aires) and
the towns of Puerto General San Martin, San Lorenzo and Rosario,
where most of the oil and biodiesel industries are located (CARBIO,
2012). Argentina's biodiesel industries are located very close to the
ports. An average distance of 10,181 km was calculated from the port
of Rosario (Argentina) to Algeciras and Palos de la Frontera (Spain),
where themain refineries and biodiesel industries of western Andalusia
are located. The shipping of biodiesel was taken into account for the
ASME scenario and soybean oil shipping for the SSME scenario.

In the SRME scenario, the oil is not extracted in the biodiesel plant,
but in other nearby industries. Seeds are transported 70 km by road in
lorries weighing 16 to 32 t. This is the distance between the growing
methyl ester) and SSME (Spanish soy methyl ester) according to the ReCiPe Midpoint



Fig. 4. Environmental impacts of ASME (Argentinean soy methyl ester), SRME (Spanish
rape methyl ester) and SSME (Spanish soy methyl ester) according to the ReCiPe
Endpoint (H) method and the consequential approach.
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area (IFAPA Rancho de la Merced) and the nearest oil extraction indus-
try that can use rapeseed in Western Andalusia, which is located in
Osuna (Seville). Andalusia has about 40 industrial plants for extracting
oil from oilseeds, mainly sunflower. Then, the oil has to be transported
to the biodiesel industries, which are at an average distance of 99 km
from the oil extraction industry and the two biggest biodiesel industries
in Andalusia.

Industrial phase
The energy and mass of raw material used in every process varies

depending on the characteristics of each industry, such as technology
or the size of the industrial plant. Both Andalusian industrial plants,
Abengoa Bioenergía San Roque, S.A. and Bio-oils Huelva, S.L.U. are
large-scale and use Desmet-Ballestra technology. Most of the Argentin-
ean biodiesel industries use the same technology as European plants
(Lurgi, Westfalia, Desmet Ballestra or Crown Iron Work) and are large
scale. Thus, the same industrial processes were taken into consideration
for all scenarios, regardless of whether production takes place in Spain
or Argentina. The industrial phase includes: grain screening and drying,
oil extraction, oil refining and transesterification. Appendix D shows a
literature review of mass and energy use in the industrial processes
per tonne of methyl ester produced, as well as the data used in this
study.

Grain screening and drying. First, the plant feedstock must be cleaned so
that any foreignmatter is removed. This applies particularly to sand/sil-
icate and iron, which may damage the preparation plant equipment. In
the screening process, particles with a density higher than 150mg/nm3

are filtered out (CIEMAT, 2006). About 2% of the weight of the material
is filtered (Esteban et al., 2011). Next, the seeds are dried by passing a
stream of air through them. According to Hamm et al. (2013), rapeseed
must be dried until themoisture content is 5%,while it is harvestedwith
a moisture content of 9% according to recommendations from (IFAPA,
2011a). Soy is harvested with a moisture content of 16% according to
recommendations from Behr et al. (2011) and has to be dried until the
moisture content is 11% (Hamm et al., 2013). Heat can be generated
from natural gas or diesel (HGCA, 2011). The use of natural gas is
Table 6
Values of the impact categories for the three pathways of biodiesel production: ASME (Argenti
ester) according to the ReCiPe Midpoint (H). Functional unit: 1 GJ.

No allocation

Impact category Indicator unit ASME SRME

CC kg CO2 eq 602 329
OD kg CFC-11 eq 1.05E-05 6.95E-06
TA kg SO2 eq 1.98 1.06
FE kg P eq 0.0116 0.0124
ME kg N eq 0.116 0.0677
HT kg 1,4-dB eq 17.4 14.0
POF kg NMVOC 0.990 0.422
ALO m2 yr 492 255
FD kg oil eq 23.3 15.2
more common in both Argentina and Spain. According to Donato and
Huerga (2009), the energy consumption in the drying process can be
calculated using Eq. (2).

E ¼ Hi–Hf½ � � η ð2Þ

where E is the energy needed in the drying process (Kcal/kg seed);Hi is
the initial seed moisture content (kg water/kg seed), Hf is the final seed
moisture content (kg water/kg seed) and η the drying efficiency of the
dryer (Kcal/kg water). A conventional dryer has a drying efficiency of
1020 kcal per kg of evaporated water (De Dios, 1996).

Oil extraction. Rapeseed can havemore than twice the oil content of soy-
bean. In this process, in the case of rapeseed, 2.52 kg of seed are needed
to produce 1 kg of oil and 1.25 kg of meal, while in the case of soybean,
5.60 kg of seed are needed to produce 1 kg of oil and 4.36 kg of meal.
First, the seeds are crushed to reduce the particle size and then flaked.
The hulls are removed by aspiration and blended with the meal that is
later extracted in the process. The oil is extracted mechanically (pressing
and rolling) from the kernel. In addition to the extracted oil, a cake with
high oil content is produced. The oil is extracted from the cake by chem-
ical means (solvents). Hexane is the most commonly used solvent and is
mostly recycled for reuse in the extraction process. Modern solvent
extraction plants recover over 99.9% of the solvent pumped into the
extractor (Hammond et al., 2005; Hamm et al., 2013). In keeping with
EPA (1995) and Gabi (2011), we included values of 2.16 kg and 1 kg of
hexane loss per tonne of soybeans and rapeseed respectively in our
calculations.

Oil refining. The oil refining process is carried out in the biodiesel plant
after receiving the crude oil. This process includes

Degumming: the crude oil is mixed with phosphoric acid, at a con-
centration of 0.1%–0.3% by weight of oil, and hot water (75 °C–90 °C)
to remove gums (by-product).

Caustic treatment: the excess of phosphoric acid is removed by reac-
tion with a solution of NaOH. The quantity of caustic substance, known
as the treat, can be calculated as in Eq. (3) (Kitani et al., 1999):

Treat ¼ 0:142 FFAð Þ þ excess½ �= %NaOH=100ð Þ ð3Þ

where FFA is the percentage of free fatty acids, which is 1.05% in
degummed soybean oil (Fornasero et al., 2013) and 0.55% in degummed
canola oil (Ghazani, 2012), excess is the excess of caustic, and % NaOH is
the caustic concentration. Suggested caustic concentrations and excess
were taken from O'Brien (2004).

Filtration: bentonite clay (natural absorbent) and TriSyl (synthetic
absorbents) are used to filter the degummed oil.

Deacidification: the free acids contained in the oil are removed
‘physically’ by volatilization at a pressure of 1 mbar and a temperature
of 240 °C–260 °C. The free acids removed are used later in the esterifica-
tion process.
nean soy methyl ester), SRME (Spanish rape methyl ester) and SSME (Spanish soy methyl

System expansion

SSME ASME SRME SSME

602 240 281 240
1.05E-05 4.22E-06 6.28E-06 4.24E-06
1.99 0.842 0.90 0.844
0.0116 −0.00128 0.0115 −0.00127
0.116 0.0465 0.0591 0.0465

17.4 3.72 12.9 3.73
0.992 0.545 0.349 0.547

492 206 215 206
23.4 10.7 13.8 10.7
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Transesterification and purification. The refined oil reacts with excess
methanol in the presence of a catalyst. Sodium methoxide is used as
the catalyst, at a concentration of 0.4% of the weight of the oil (Babu
et al., 2013). Four reactors are used in the transesterification process,
in which methyl ester (or biodiesel) and glycerol are obtained as the
main products. In order to separate the two products, the glycerol is
decanted. The biodiesel is washed to remove the rest of the methanol,
glycerol, catalyst and soaps. A conventional wet purification process is
carried out (acid water washing). Citric acid is used in this process as
a washing agent, at a concentration of 0.1 M (Serrano et al., 2013) or
19.2 g/L.

In accordance with Berrios and Skelton (2008) and Lamers
(2010), a water/biodiesel ratio of 0.5/1 was used in our calcula-
tions, employing multiple successive washing steps. Most of the
new biodiesel industries have a wastewater treatment plant and most
of the industrial process water which is not evaporated is reused. In
the evaporation processes, the excess of water in the products is re-
moved. The water content of the biofuel after the washing steps is
around 0.5%. This value is above the maximum set by the standards
(0.03%) and it is therefore necessary to dry it. Crude glycerol of about
85 wt% also has to be purified to obtain a product with a purity of at
least 99 wt%. Water elimination is necessary when average moisture
content is in the range of 4% to 0.95% (Ayoub and Abdullah, 2012).
Therefore, 4.7 kg of water are evaporated from biodiesel and 4.1 kg of
water from glycerol per tonne of biodiesel produced in the drying pro-
cess. Moreover, 12 kg of tap water is used by the staff per tonne of bio-
diesel produced (80 kg per person per eight-hour shift). The excess
methanol is also removed in the evaporation process and is recycled
in the transesterification process. Most of the catalyst is also recovered
but a small part is consumed producing soaps and sodium citrate. The
glycerol is purified by using hydrochloric acid to remove free acids.
Then, the acid glycerol is neutralized with sodium hydroxide. The free
acids coming from the glycerol purification and oil refining are also
used to produce biodiesel in the acid esterification process using
sulphuric acid as a catalyst and methanol.

Life cycle impact assessment (LCIA)

The ReCiPe methodology with a hierarchic perspective was used
to quantify the impacts in the LCIA phase (Goedkoop et al., 2013).
ReCiPe uses two strategies, midpoint (problem oriented) and endpoint
(damage oriented), and comprises two sets of impact categories with
associated sets of characterization factors. The midpoint characteriza-
tion factors are multiplied by the damage factors to obtain the endpoint
characterization values (Pré, 2015). Both strategies, midpoint and end-
point, were used in this study. Table 4 shows the indicator units for
every selected impact category at midpoint.

In the endpoint assessment, damages to human health, ecosystems
and resources are assessed.

Allocation procedures

Allocation refers to the distribution of environmental burdens be-
tween co-products of a multifunctional system. The main co-products
in the systems studied are biodiesel and glycerol from the
transesterification process, and press cake (ormeal) and oil from oil ex-
traction. However, current biodiesel production has flooded the market
with glycerol, leading to a drop in market prices (Esteban et al., 2011).
Therefore, no allocation was made to glycerol and the environmental
burdens were shared between oil and cake in the oil extraction and re-
fining process.

According to ISO 14040, allocation should be avoidedwherever pos-
sible by (1) dividing the unit process to be allocated into two or more
sub-processes and (2) expanding the product system to include the ad-
ditional functions related to the co-products. In our case studies, system
expansion is possible and, as ISO14040 recommends, thiswas chosen as
thefirst option, instead of allocationmethods (energy content, econom-
ic value, mass, etc.) which are usually collectively referred to as the at-
tributional approach. In system expansion, also known as the
consequential approach or substitution method, the inputs and outputs
are entirely ascribed to the process (biodiesel production), while the
system is expanded to include the products that can be avoided due to
the production of co-products (press cake). That way, the environmen-
tal impacts of co-products are subtracted. It was assumed that soy meal
can be substituted by rape meal and vice versa. As they are coproduced
with oil, this introduces another need for system expansion, leading to a
never-ending cycle which has been described as the soybean–rapeseed
loop (Dalgaard et al., 2007). Therefore, at some point, it is necessary to
use an allocation method to estimate the environmental load of the
co-product. The meals coproduced are used almost exclusively for
animal feed. However, neither mass nor energy allocation are good
approaches for biofuel systems because they do not recognize the
nutritional differences between the oilseed meals. Instead, we used
the economic allocation procedure as suggested by Reinhard and Zah
(2011) and in keeping with the ecoinvent database for bioenergy
products (Jungbluth et al., 2007), where the allocation of environmental
impacts between co-products is based on the respective prices of the co-
products. Average international prices were taken for the period Oct.
2014–Sep. 2015 and are shown in Table 5. Therefore, the use of local
rapeseed meal to feed animals displaces the soybean meal in the
ASME and SSME scenarios in order to discount its credits. Similarly,
the use of imported soybean meal to feed animals displaces the
rapeseed meal in the SRME scenario. As a result, 1 kg of rape meal is
equivalent to 0.64 kg of soybean meal.

Sensitivity analysis

The sensitivity analysis is an optional element of LCA to estimate the
validity of the results of the LCIA. In this study, it was performed as rec-
ommended by ISO standards. The environmental load was shared be-
tween co-products according to the attributional approach through
allocation based on energy content, mass and price. Table 5 shows the
allocation factors taken into consideration in the assessment.

Moreover, a scenario without allocation was contemplated, where
all emissions and energy used solely burdened the biodiesel.

Results

All results are plotted on a percentage scale. The figures show a com-
parison between the impacts caused by the different pathways of bio-
diesel production. The vertical axis is a percentage scale of every
impact category. The highest score, i.e. the pathway which causes the
highest burden, is scaled to 100% and the others are relative scores.

The results obtained show that when the consequential approach
(avoided burden) is used (Fig. 3), the Spanish rapeseed-based biodiesel
pathway (SRME) causes higher environmental impacts than the
soybean-based biodiesel in both pathways (ASME and SSME) in all the
selected midpoint impact categories, except in POF, where the SRME
pathway causes 64% of the impacts caused by the ASME and SSME path-
ways. The burdens of soybean-based biodiesel production (ASME and
SSMEpathways) represent 29% to 96% of the burdens caused by Spanish
rapeseed-based biodiesel production (SRME) in the categories HT
(29%), OD (67%), FD (78%), ME (79%), CC (85%) TA (93%) and ALO
(96%). Moreover, soybean-based biodiesel produces positive impacts
(shown as negative in Fig. 3) in the FE category, due to credits of rape
cake which are discounted in the system expansion procedure.

The damage analysis carried out using the ReCiPe Endpoint (H) and
system expansion (Fig. 4) shows that SRME causes the highest impacts
in the three damage categories (human health, ecosystems and
resources).

Table 6 shows the values returned for the impact categories when
system expansion is carried out, as well as when any allocation is used
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(i.e. allocating 0% of burdens to press cake). The differences between
them are due to the credit discounted for the press cake in the conse-
quential approach.

The effects of every process in the impact categories were analysed,
so that decision makers can focus on those processes which cause
higher environmental impacts. As Fig. 5 shows, ‘seed production’ is
A

B

C

Fig. 5. Relative environmental burdens of the processes of ASME—Argentinean soy methyl
(C), according to the ReCiPe Midpoint (H).
the process with the greatest effect in most of the selected impact
categories for all the pathways (ASME, SRME and SSME). ‘Oil extraction
and refining’ is the second most critical process. However, Fig. 5 shows
negative values, i.e. positive impacts inmost of the categories addressed
for the ‘oil extraction and refining’ process. The negative values are due
to the fact that this process is highly influenced by the credits which are
ester (A), SRME—Spanish rape methyl ester (B) and SSME—Spanish soy methyl ester



A B

Fig. 7. Relative environmental burdens of the ‘oil extraction and refining’ sub-processes in Spanish rape oil production (A) and Argentinean soy oil production (B), according to the ReCiPe
Midpoint (H) method.

A B

Fig. 6. Relative environmental burdens of ‘seed production’ sub-processes in Spanish rapeseed production (A) and Argentinean soybean production (B), according to the ReCiPeMidpoint
(H) method.
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discounted for the press cake in the consequential approach. Therefore,
more details are needed for the processes of ‘seed production’ and ‘oil
extraction and refining.

Figs. 6 and 7 show the percentage of impact caused (positive values)
or avoided (negative values) by every sub-process included in ‘seed
production’, ‘oil extraction’ and ‘oil refining’ relative to the total impact
in each category. Whenwe focused on ‘seed production’, we discovered
that ‘fertilization’ is the sub-processwith the greatest effect in all the se-
lected impact categories (except in ALO) and is responsible for 56% to
97% of the environmental impacts of both seed production pathways,
rapeseed in Spain (Fig. 6a) and soybean in Argentina (Fig. 6b). Within
fertilization, nitrogenous fertilization is the main cause of the impacts.

In the ALO category, ‘land use’ causes higher burdens. ‘Agricultural
machinery’ is the second most critical factor, but its contribution repre-
sents less than half of the burdens caused by fertilization in most of the
categories addressed.

Within the ‘oil extraction and refining’ process, it was found that the
‘construction of the industrial plant’ and ‘wastewater treatment’ cause
A

B

C

Fig. 8. Environmental impacts of SSME (Spanish soy methyl ester), SRME (Spanish rape met
(H) method and attributional approach.
insignificant environmental impacts compared with those caused by
the use of ‘chemical products’, ‘electricity’ and ‘steam’ (Fig. 7). In rape
oil extraction and refining (Fig. 7a), the use of ‘chemical products’ is
the main cause of impacts in the categories POF, TA, FE and ME, while
the use of ‘steam’ in the industrial plant causes the highest burdens in
the CC, OD, HT and FD categories. In soy oil extraction and refining
(Fig. 7b), the use of ‘chemical products’ is the main cause of impacts in
the categories POF, FE and ME while the use of ‘steam’ is the main
cause of burdens in the categories CC, OD, HT, TA and FD. The use of
‘electricity’ is responsible for the highest impacts in the ALO category
in both systems. The negative values in all categories show the credits
discounted for the press cake, which are avoided (in other systems
than the one analysed here) when the system is expanded due to the
co-products which are produced in the ‘oil extraction and refining’ pro-
cess. When rape oil is extracted to produce biodiesel, rape meal is also
co-produced. Rape meal can be used to substitute soy meal as animal
feed, and therefore soy meal production is avoided in other systems.
In the same way, when soy oil is extracted to produce biodiesel, soy
hyl ester) and ASME (Argentinean soy methyl ester) according to the ReCiPe Midpoint
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meal is also co-produced. As soy meal can be used as animal feed to
substitute rape meal, the latter is avoided in other systems. Fig. 7
shows that when the same quantity of oil is extracted in both systems
(soy and rape) the avoided production of rapemeal (Fig. 7b) contributes
more positively than the avoided production of soy meal (Fig. 7a).

The sensitivity analysis shows that results are largely dependent on
the method used for allocation of the environmental burden between
oil and meal in the ‘oil extraction and refining’ process (Fig. 8). When
the attributional approach is used rather than the consequential
approach, SRME is themost environmentally friendly pathway, causing
fewer impacts in most of the categories addressed, except in FE for the
economic allocation approach. Allocation by price attributes to
the SRME pathways between 46% and 87% of the burdens caused by
the SSME and ASME pathways in most of the impact categories. When
allocation by energy content is used, the differences are softened and
the impacts caused by SRME are between 86% and 100% of those caused
by the other pathways. Physical allocation (mass) attributes to SRME
between 74% and 100% of the impacts caused by the other options.

Discussion

The LCA methodology has allowed us to reach conclusions, to select
the most sustainable pathway and focus on the processes that could
contribute to the development of better management strategies aimed
at reducing the impacts in the biodiesel production chain. The analyses
carried out in this study highlight that when system expansion is used
rather than allocation methods, as ISO 14044:2006 recommends,
soybean-based biodiesel producedwith feedstock from theArgentinean
Pampas has a lower environmental impact than rapeseed-based biodie-
sel produced with feedstock from the Southwest of Spain.

We agree with Milazzo et al. (2013) on the point that only demon-
strably sustainable feedstock should be used in biodiesel production.
We also believe that themost sustainable pathway of biodiesel produc-
tion should be promoted by governments. Consuming soy-based bio-
diesel instead of rapeseed-based biodiesel would be an efficient
solution for improving the sustainability of the Spanish biodiesel con-
sumption. However, in Spain, biofuel policies (MINETUR, 2012a,
2012b, 2014) are leading to an increase in the consumption of
rapeseed-based biodiesel and a decrease in soybean-based biodiesel,
which is environmentally more sustainable. Seed production is the pro-
cess that generated the greatest environmental burdens in the LCA of
the biodiesel production pathways analysed, especially in rapeseed-
based biodiesel production. The strategic role of the agricultural phase
on the global impact of biofuels compared to the transport or industrial
phases has been noticed in most biodiesel LCAs, for example, CIEMAT
(2006); Panichelli et al. (2006); S&T (2010); Fazio and Monti (2011);
Requena et al. (2011). When comparing soybean and rapeseed cultiva-
tion, it was found that the soy crop required a lower consumption of fer-
tilizers and fewer crop management operations than the rape crop.
Therefore, the soybean-based scenarios appeared to be more environ-
mentally efficient than the rapeseed-based scenario. Nitrogen fertilizing
is the process that causes the highest impact, so particular attention
should be focused on this aspect in Spanish rape crops since rapeseed
occupation is expected to continue increasing in Spain (MAGRAMA,
2015a). Our results to some extent contradict the assertions of certain
environmental groups (Biofuelwatch, 2012) and authors (Tomei and
Upham, 2009) who argue that large-scale biodiesel production, such
as Argentinean soybean-based biodiesel, is inherently unsustainable
compared to EU domestic production due to its cultivation characteris-
tics, such as pesticide application, N2O emissions or deforestation. Ac-
cording to our results, from an environmental point of view, soybean
has a key advantage over rapeseed in terms of fertilization. Approxi-
mately 50% of N removed by the soybean crop is supplied via biological
fixation, leading to less need for nitrogen fertilizers, which consequently
reduces its environmental impacts (Fernández-Tirado et al., 2013).
However, non-leguminous plant species, such as rape, can also fix
atmospheric nitrogen when subjected to a process of artificial
inoculation of bacteria which form symbiotic relationships with
developing plant roots, called paranodules (Koval'skaya et al., 2001).
Paranodulation, i.e. the artificial formation of nodules on the roots of
non-leguminous plants, would help to reduce the consumption of
fertilizers and would be a strategy to reduce the environmental impacts
in the rapeseed-based biodiesel chain.

Furthermore, by-products are significant influential factors for the
LCA results. Soybean and rapeseed meal are co-produced with soy and
rape oil respectively. However, soybean meal wins over rapeseed meal
both in quantity produced by tonne of rawmaterial and in selling prices.
While 1 t of rape seeds results in 395.6 kg of rape oil and 604.4 kg of rape
meal, 1 t of soybeans results in 188.1 kg of soybean oil and 794.0 kg of
soybean meal (Jungbluth et al., 2007). In addition, rape meal prices
are 36% lower than soy meal prices. Consequently, approximately 65%
of the profits of the rape oil extraction industry come from the sale of
oil and 35% from the meal. By contrast, 70% of the profits of the soy oil
extraction industry come from the sale of meal and 30% from the oil.
On this basis, it is essential to consider the meal as a co-product when
biodiesel is assessed, as if all the burdens were allocated to the oil, the
impacts of soybean-based biodiesel would be a lot higher. In fact, sever-
al authors have questioned whether soybean is actually a suitable raw
material for biodiesel due to the low oil yield of soybean (Asal et al.,
2006; Lamers et al., 2008; Milazzo et al., 2013; Tomei and Upham,
2009) because they did not take into account the meal as a co-product.

Our results also differ greatly from those obtained by Requena et al.
(2011), who compared rapeseed-based biodiesel and soybean-based
biodiesel without taking co-products into account. In our research, the
production of soy meal as a co-product in soybean-based biodiesel is a
significant plus to both scenarios, ASME and SSME. Soymeal production
avoids rape meal production, in the system expansion method, so the
burdens of its production are discounted. As rape cultivation cause
higher impacts than soy cultivation, more than half of the burdens
which are produced when ASME and SSME systems are analysed with-
out allocation are discounted in all the categorieswhen the system is ex-
panded by including the substitution of rape meal. In particular, in the
FE category, rape meal production causes greater P emission into fresh
water than soy meal. Higher quantities of triple superphosphate are
needed in the Spanish rapeseed production process. By contrast, Argen-
tinean soybean requires less quantity of P as nutrient and consequently
less P quantities are emitted into fresh water. Moreover, the quantity of
P emission into freshwater subtracted for replacing rapemeal exceeded
the P emission into fresh water caused by the production of soybean-
based biodiesel. Thus the values are negative. By contrast, rape meal is
not as valuable (in price terms) as soy meal so fewer credits are
discounted when the system is expanded. This brings about the result
that Spanish rapeseed-based biodiesel (SRME pathway) has higher
environmental impacts than soybean-based biodiesel produced with
Argentinean soy oil either in Argentina or in Spain (ASME and SSME
pathways). The importance of meal has been cited by other authors,
such as Kim and Dale (2005); S&T (2010); Thamsiriroj and Murphy
(2010). However, Thamsiriroj and Murphy (2010) reached very differ-
ent conclusionswhen the rapeseed-based biodiesel system is expanded
with soybeanmeal avoided, since they used energy allocation instead of
economic allocation.

Our results, which are valid for the consequential approach, vary
substantially with respect to the attributional approach, due to the pat-
ent influence of the allocation method used in this approach. When the
three pathways (SSME, SRME, and ASME) are compared using alloca-
tion methods (mass, economic or energy) the results are significantly
different, aswith thesemethods SRME is themost environmentally sus-
tainable system. We therefore agree with Gonzalez-Garcia et al. (2013)
in that the allocation procedure is a critical issue in LCA studies because
the environmental results vary considerably according to the allocation
factors. We also agree with Bernesson et al. (2004) in that when differ-
ent biofuels are compared, it is important that the results are calculated
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with the same allocation strategies and system limitations, since
the choice of allocation method may influence the final results
considerably.

The results obtained must be interpreted taking into account the as-
sumptions that were made and the limitations of LCA (Reap et al.,
2008a, 2008b). We should highlight the aforementioned influence on
the results of the choice of methods for the allocation of co-products.
However, the strength of LCA lies in the fact that it provides an objective
method of calculation, including a holistic and systemic listing of all the
inputs and outputs of the system being analysed.
Conclusions

This study permitted the assessment of biodiesel environmental sus-
tainability and the proposal of bettermanagement strategies for cleaner
production of biodiesel consumed in Spain. The results show that
Argentinean soybean is a suitable rawmaterial for biodiesel production.
In fact, it is even more environmentally sustainable than the dominant
feedstock in EU countries, i.e. rapeseed. These results could contribute
to a more efficient design of policies in Spain, since environmental
issues are a key driver for the establishment of policies to promote
biofuels in the EU.

The greatest environmental impacts are generated in the agricultur-
al phase. Moreover, fertilization is the sub-process which generated the
greatest environmental impacts in most of the categories in both seed
production systems, i.e. Spanish rapeseed and Argentinean soybean.
Since a notable increase of rapeseed-based biodiesel is anticipated in
the next few years, improving the fertilization process is a priority,
especially for Spanish rape feedstock. Measures focused on reducing
the consumption of N fertilizers would lead to a significant decrease in
environmental impacts.

Notwithstanding, if the objective of public policy is to promote the
sustainable use of biofuels, an analysis of the global sustainability of
biodiesel consumed in Spain is needed which includes not only the
environmental dimension but also the economic and social dimensions
of sustainable development. Hence, it is essential to find out whether
the different biodiesel production pathways are generating benefits or
disadvantages, such as the creation or loss of jobs, or the stability or
M
Ti
R
C
Se
expulsion of rural populations, and then to compare Spanish andArgen-
tinean benefits and impacts.
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Appendix A. Data sources for the inventory analysis

The data relating to the cultivation of rapeseed were taken from the
research project ‘RAEA-Biofuels’ conducted in IFAPA (Institute of
Agricultural and Fisheries Research and Training) from 2006 to 2009.
The rapeseed crop was located at the IFAPA Experimental Station in
Jerez de la Frontera, in southwest Spain (36°38′N, 06°00′W). Sowing
took place in December (2006 and 2007) and in November (2008).
The harvest occurred in June (2007 and 2008) and May (2009). The
data relating to soybean were taken from the results obtained from
the 2009 to 2012 sampling campaigns of the Regional Agricultural
Project ‘Rural Development’ at the Buenos Aires North Regional Centre
(CRBAN) located in the INTA Experimental Station in Pergamino,
Argentina (33°57′S; 60°32′W). Sowing took place in December (2009)
and November (2010 and 2011). The harvest occurred in March in all
three years. The harvest date of both rapeseed and soybean depended
mainly on grain humidity. Data relating to the biodiesel industry
phase of oil refining and transesterification were taken from the litera-
ture and compared with the processes used in the two biggest biodiesel
plants in Andalusia, located in southwest Spain: Bio-oils Huelva, S.L.U. in
the town of Palos de la Frontera in the province of Huelva (37°10′40″N,
6°53′20″W) and Abengoa Bioenergía San Roque, S.A. in the town of San
Roque in the province of Cádiz (36°11′23″N, 5°23′22″W). Both indus-
tries acquired crude vegetable oil instead of processing seeds. Neither
rapeseed nor soybean oil extraction are common in Spain. Therefore,
data for screening, drying and oil extraction were taken from the
literature.
Appendix B. Information on the use of agricultural machinery

B.1. Inputs

B.1.1. Agricultural machinery in the cultivation of rapeseed in Spain
The farming tasks involved in growing rapeseed were compiled from the Andalusian Network of Agrarian Experiments (RAEA) in biofuels from

theMinistry of Agriculture and Fisheries of the Government of Andalusia (IFAPA, 2011a). Data on the agriculturalmachinery used in Spainwas gath-
ered from specific databases such as the agricultural machinery database from the Ministry of Agriculture, Food and Environment (MAGRAMA,
2015b). Table A1 shows the basic characteristics of the machinery used throughout the life cycle of rapeseed cultivation in Andalusia.

Table A1
Farming, characteristics and requirements of agricultural machinery per ha and year for rapeseed production in Andalusia.
Type of machinery
 N
 W
 C
 L
 F
ouldboard plough
 1
 1000
 1.00
 3000
 21.58

llers with flexible arm
 2
 900
 0.25
 3000
 13.24

oller
 1
 300
 0.25
 800
 2.76

entrifugal fertilizer
 2
 700
 0.04
 800
 0.74

ed drill planter
 1
 810
 0.60
 1200
 7.88

esticide sprayer
 1
 250
 0.14
 1000
 1.02
P
N: No. of tasks.
W: Weight of the implement (kg).
C: Time required for the task (theoretical capacity to work) (h).
L: Lifetime of the implement (depreciation due to wear)) (h).
F: Fuel consumption (diesel) (l).
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In the inventory, the agricultural machinery and the diesel required to perform the work are considered as inputs. The processes for producing
the machinery were taken from the Ecoinvent database. The agricultural machinery (AM) (in units of mass) needed per functional unit (ha) was
calculated according to Eq. (A1):

AM ¼ ∑iWiCi=Li ðA1Þ

where i is each tillage implement, Wi the weight of each implement (kg), Ci its theoretical capacity to work (h ha−1), and Li its lifetime (h).
In addition to the implements, the production process for the tractor needed to perform the farm work was also calculated as an input.

B.1.2. Agricultural machinery in the cultivation of soybean in Argentina
For the first planting of soybeans in the NT system, the tasks required are sowing, pesticide application, fertilization and harvesting (Panichelli

et al., 2006). The authors considered that each of these activities must be conducted once during the growing season, except for the application of
pesticides, which is performed six times. However, for this analysis, it was considered that pesticide application is performed twice, since this is
the current trend. Data regarding each of the aforementioned tasks for one hectare of land are taken from the Ecoinvent database, as shown in
Table A2.

Table A2
Tasks carried out per ha and year for soybean production in Pergamino, Argentina.
So
P
Fe

C
C
N
S
N
Le
M
B
C
C
C
D
N
Z
B
A
S
B
B
C
D

No. of tasks
wing
 1

esticide application
 2

rtilization
 1

arvesting
 1
H
B.2. Outputs

In the rapeseed case study, emission factorswere used to calculate air emissions,which take the emissions into consideration as a fixed proportion
of inputs (Table A3). The emissions of heavymetals into the soil resulting from tyre abrasion were calculated according to Nemecek and Kägi (2007)
(Eq. (A2)).

HM ¼ Lt=Lw �Ww=Wt � Cr � Chm � AM ðA2Þ

where HM are the heavymetals emitted (g ha−1); Lt is the lifetime of the tractor (h); Lw is the lifetime of the tyres (h),Ww is theweight of the tyres
(kg),Wt is the weight of the tractor (kg); Cr is the concentration of rubber in the wheel (dimensionless); Chm the concentration of heavy metals in
the rubber (dimensionless) and AM is the amount of machinery (tractors) needed to perform the work (kg ha−1) obtained according to Eq. (A1).
Table A4 shows the values used in this study to apply Eq. (A2).

Table A3
Emissions of gases into the atmosphere of agricultural machinery in the cultivation of rapeseed per kilogramme* of diesel consumed.
Air emission
 Emission factor (g Kg−1)
 Source
arbon monoxide
 2.91E + 01
 Audsley et al. (2003)

arbon dioxide
 3.04E + 03

itrogen oxides
 5.71E + 01

ulphur dioxide
 4.15E + 00

MVOC
 9.16E + 00

ad
 1.46E-01
 Nemecek and Kägi (2007)

ethane
 1.29E-01

enzene
 7.30E-03

admium
 1.00E-05

hromium
 5.00E-05

opper
 1.70E-03

initrogen monoxide
 1.20E-01

ickel
 7.00E-05

n
 1.00E-03

enzo(a)pyrene
 3.00E-05

mmonia
 2.00E-02

elenium
 1.00E-05

enz(a)-Anthracene
 8.00E-05

enzo(b) fluor-anthracene
 5.00E-05

hrysene
 5.00E-05

ibenzo(a,h)-anthracene
 1.00E-05

uoranthene
 4.50E-04
Fl
*For a density of 830 kg l−1.
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Table A4
Emissions of heavy metals into the soil resulting from tyre abrasion and factors used for its calculation.
Lt
Lw
W
C
C
C
C
A
H
H

O
Se
P
C
Si
B

Amount
 Unit
 Source
12,000
 h
 MAGRAMA (2015b)

2500
 –
 Nemecek and Kägi (2007)
w/Wt
 0.0975
 –
 Nemecek and Kägi (2007)

r
 0.29
 –
 Nemecek and Kägi (2007)

Zn
 16
 g kg−1
 Nemecek and Kägi (2007)

Pb
 2.6
 g kg−1
 Nemecek and Kägi (2007)

Cd
 0.6
 g kg−1
 Nemecek and Kägi (2007)

M
 2
 h ha−1
 MAGRAMA (2015b)

MZn
 2.1786
 g ha−1
 Equation A2

MPb
 0.3545
 g ha−1
 Equation A2

MCd
 0.0772
 g ha−1
 Equation A2
H
Lt: lifetime of the tractor (h).
Lw: lifetime of the tyres (h).
Ww: weight of the tyres (kg).
Wt: weight of the tractor (kg).
Cr: concentration of rubber in the wheel (dimensionless).
CZn: zinc content in rubber of tyre.
CPb: lead content in rubber of tyre.
CCd: cadmium content in rubber of tyre.
HMZn: Zn emitted (g ha−1).
HMPb: Pb emitted (g ha−1).
HMCd: Cd emitted (g ha−1)

Appendix C. Information on the application of pesticides

C.1. Pesticide production

Glyphosate production is inventoried in the Ecoinvent database as a single process, so this active ingredientwas selected. However, Trifluraline is
not inventoried as such but within the family of compounds of dinitroaniline, so the production process for this family of chemicals was selected.

C.2. Pesticide packaging and waste scenario

Pesticides are usually packaged in HDPE rigid bottles. The weight of these bottles is about 50 g l−1. In both farming systems, a rational manage-
ment of packaging has been assumed in which farmers comply with the regulations on waste collection and the bottles are then recycled.

C.3. Transport of pesticides

Besides the production process, the transport required to send a pesticide from its place of production to the place where it is applied was also
taken into consideration as an input. The rapeseed cultivation takes place in the town of Jerez in the province of Cádiz (Spain) and the soybean
crop in the department of Pergamino in the province of Buenos Aires (Argentina). For rapeseed in Jerez, a distance of 500 km, the mean distance
of agrochemical transport in Spain (Gasol et al., 2007), was taken. For soybean, 220 km, the distance between Pergamino and the federal capital of
Buenos Aires, where the majority of the agrochemical industries are situated, was taken (CIAFA, 2011).

The chosen vehicle is a truck weighing 16 to 32 t, in accordance with Jungbluth et al. (2007). The technology of the selected truck complies with
the Euro III standard, since it is themost abundant type of truck in the Spanish fleet (Fomento, 2011). The European standards Euro III, IV and V have
also been implemented in Argentina (LCEGV, 2011). In this country, the life span of the trucks is about 14.2 years (UTN, 2007), so the type of truck
that complies with Euro III was also chosen.

Appendix D. Literature review of mass and energy use in the industrial processes and data used in this study (per tonne of methyl ester
produced).

Table A5
Mass inputs in industrial processes per tonne of RME and SME.
RME
 SME
CIEMAT
(2006)
Jungbluth
et al.
(2007)
Halleux
et al.
(2008)
Esteban
et al.
(2011)
Dufour
et al.
(2013)
Gonzalez-Garcia
et al. (2013)
Malca
et al.
(2014)
Data
used
CIEMAT
(2006)
Panichelli
et al.
(2006)

J
e
(

ungbluth
t al.
2007)
Donato
and
Huerga
(2009)
Hou
et al.
(2011)
Castanheira
et al.
(2015)
Data
used
il extraction and refining

eds
 kg
 2669
 2599
 2550
 2600
 2528
 2193
 2523
 5666
 5577 5
465
 5343
 5986
 5284
 5607

hosphoric acid
 kg
 2.95
 0.78
 1.01
 1.44
 2.95
 0.94
 1.36
 2.96

itric acid
 kg
 0.94
 0.42
 0.40
 0.94

lica gel: Trysil
 kg
 2.50
 2.05
 2.05

leaching earth
(Bentonite)
kg
 12.51
 5.98
 0.80
 16.16
 12.51
 1.20
 16.16
(continued on next page)
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able A5 (continued)
A
So

C

H
T
D

T
O
M
A
H
S
P
C
H
P

So
A
A
N
P

So
A

A

S
In

W

G
E
H

O
E
E
St
N
N
H

T
E
St
RME S
ME
CIEMAT
(2006)

J
e

ungbluth
t al.

(2007)
Halleux
et al.
(2008)
Esteban
et al.
(2011)
Dufour
et al.
(2013)

G
e

onzalez-Garcia
t al. (2013)
Malca
et al.
(2014)
Data
used

C
(

IEMAT
2006)
Panichelli
et al.
(2006)
Jungbluth
et al.
(2007)
Donato
and
Huerga
(2009)
Hou
et al.
(2011)
Castanheira
et al.
(2015)
Data
used
mmonium nitrate
 kg
 0.42

dium hydroxide
(11.06%)
kg
 5.39
 5.30
 1
.91
 13.74 5
.39
 0.55
 2.28
 23.10
ationic resin:
Amberlist 15 Dry
kg
 3.16
exane
 kg
 4.69 2
.86
 2.70
 3.06
 0.70 2
.78
 2.19
 2.52 4
.27
 11.15
 11.48
 8.12
 12.12

ap water
 kg
 1042
 510
 310
 1
61
 3
060
 479
 469
 1

eionized water
 g
 8
.30
ransesterification and purification

il
 kg
 1023 1
028
 1020
 1080 1
020
 1020
 1026 1
023
 1015
 1028
 1035
 1018
 1000
 1026

ethanol
 kg
 106 1
14
 109
 110
 106 9
8
 110
 107 1
06
 121
 114
 97
 96
 105
 107

cids
 kg
 4
.63
 4.63

ydrochloric acid
 kg
 5.20
 10.00
 1
3.24
 5.91 5
.20
 1.36
 3.33
 3.07
 5.91

ulphuric acid
 kg
 0
.30
 0
.00

hosphoric acid
 kg
 0.04
 4.60
 0
.04
 9.53
 1.74

itric acid
 kg
 0
.28
 9.61
 0.77
 9.61

ydroxides
 kg
 1
1.31
 11.31

otassium
hydroxide
kg
 11.00
dium hydroxide
 kg
 1.10
 2
.35
 1
.10
 4.90
 0.44

luminium sulphate
 Kg
 0.07
 0
.07

mmonium nitrate
 Kg
 0.71
 0
.71

itrogen
 kg
 0
.23
 3.32

otassium
methylate
kg
 1
6.70
diummethoxide
 kg
 4.85
 4.10 4
.85
 16.53
 5.16
 4.10

ntioxidant:
vitamin D
kg
 2.92
 2
.50
 1.89
ntioxidant:
p-Toluenesulfonic
acid
kg
 0.25
ilica gel: Trysil
 kg
 3.06

dustrial Process
water
kg
 388 2
7
 390
 25 2
0
 500 3
88
 27
 27
 318
 500
ater consumed
by the staff
kg
 12.00
 12.00
Table A6
Energy use in industrial processes per tonne of RME and SME.
RME
 SME
CIEMAT
(2006)

J
e

ungbluth
t al.
(2007)
Halleux
et al.
(2008)

E
e
(

steban
t al.
2011)
Dufour
et al.
(2013)

G
e

onzalez-Garcia
t al. (2013)
Malca
et al.
(2014)
Data
used
CIEMAT
(2006)
Panichelli
et al.
(2006)

J
e
(

ungbluth
t al.
2007)
Donato and
Huerga
(2009)
Hou
et al.
(2011)
Castanheira
et al.
(2015)
Data
used
rain screening and drying

lectricity
 MJ
 119
 44
 81
 81

eat (Natural gas)
 MJ
 812
 811
 431
 1196
il extraction and refining

lectricity (press)
 MJ
 2747 3
70
 382 3
06
 90 3
60
 370
 941
 327 1
106
 596
 593
 593

lectricity (refining)
 MJ
 92 2
2
 40 9
0
 7
02
 22
 92
 36
 36

eam
 kg
 782 6
81
 430 1
95
 522
 1980 1
475
 2044
 1833

atural gas (press)
 MJ
 2908
 2317 1
826
 4634
 2688

atural gas (refining)
 MJ
 358
 162 3
57
 270

eat (fuel oil) (press)
 MJ
 494
ransesterification and purification

lectricity
 MJ
 59 1
52
 133 6
0
 142 5
29
 179
 59
 148 1
52
 125
 144
 144
 179

eam
 kg
 3
42
 680 1
30
 342
 333 3
42
 1232
 581
 342

atural gas
 MJ
 1473
 947 1
440
 1473
 760
N
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