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ABSTRACT   7 

 Based on reverse genomics and growth of cultured populations, it has been hypothesized 8 

that cyanate is utilized as a nitrogen source by ubiquitous groups of marine phytoplankton.  9 

Recently a nanomolar method was developed to measure cyanate concentrations in marine and 10 

estuarine waters.  Here we report the first measurements of cyanate distributions, biological 11 

utilization, and production from the coastal North Atlantic Ocean.  Cyanate concentrations were 12 

highest below the chlorophyll maximum at many stations but were high throughout the water 13 

column on the shallow Georges Bank where chlorophyll concentrations were especially high 14 

down to the bottom, suggesting production by organic matter degradation or release by 15 

phytoplankton.  Here we demonstrate that cyanate is produced in senescent algal cultures and 16 

through photochemical reactions at rates comparable to production of other labile nitrogen 17 

compounds. Cyanate uptake accounted for up to 10% of total N uptake at an oligotrophic mid-18 

Atlantic Bight station.  Our results suggest that cyanate may be an important but hitherto 19 

overlooked component of the marine nitrogen cycle. 20 

  21 
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Introduction  22 

 Nitrogen (N) limits phytoplankton growth in most marine environments.  Consequently, 23 

identifying sources and sinks of bioavailable N is critical for estimating oceanic primary and 24 

secondary productivity.  While many dissolved organic nitrogen (DON) compounds are known 25 

to be bioavailable, much of that pool is uncharacterized.
1
  Recently it was discovered that some 26 

microbes have the genetic capacity to take up and metabolize cyanate (OCN
-
), perhaps the 27 

simplest DON compound.  Genes encoding intracellular cyanate decomposition and a cyanate-28 

specific transporter have been identified in marine cyanobacteria,
2-4

 and isolates of 29 

Synechococcus (WH8102), Prochlorococcus (MED4, SB), a coastal dinoflagellate, 30 

Prorocentrum donghaiense, and some heterotrophic bacteria have been cultured using cyanate as 31 

the sole N source.
5-8

  It has been hypothesized that the evolution of Prochlorococcus strains has 32 

been driven by the availability of different N sources.  Because Prochlorococcus have 33 

streamlined genomes likely containing only the genes necessary for survival,
9,10

 it is possible that 34 

Prochlorococcus strains living in the modern ocean and containing cyanate-related genes, utilize 35 

this compound in the environment.  Prochlorococcus and Synechococcus account for two thirds 36 

of present day oceanic primary production,
9
 therefore cyanate utilization could be globally 37 

significant and its biogeochemistry may affect global primary and secondary production.  38 

Cyanate has also been shown to support nitrification as both a reductant and N source in 39 

chemoautotrophic prokaryotic cultures,
11

 which could have implications for N speciation in 40 

marine systems. 41 

 Cyanate is produced abiotically as a result of urea and carbamoyl phosphate 42 

decomposition.
12,13

  As a simple molecule with chemical linkages common in organic matter, 43 

cyanate is likely produced by other largely unexplored biotic and abiotic processes in aquatic 44 
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systems such as pyrimidine, protein and peptide decomposition.  However, the abundance and 45 

distribution of cyanate and its reactivity in marine environments is unknown because, until 46 

recently, we lacked a sensitive method to quantify it.  Cyanate may have formed spontaneously 47 

on the prebiotic Earth,
14,15

 and it is possible that cyanate played important roles in early Earth 48 

biogeochemistry,
16

 contributing to the abiotic synthesis of pyrimidines
17

 and adenosine 49 

diphosphate (ADP).
18

  Cyanobacterial cyanate genes also appear to have evolved early
5
 50 

suggesting that cyanate could have also served as an N source for cyanobacteria living on the 51 

pre-oxygenated Earth.  Understanding cyanate cycling in the modern ocean may therefore give 52 

important clues to both present day and early Earth N cycling.  53 

 We have developed a method to measure cyanate in seawater,
19

 and here we provide the 54 

first observations of: 1) cyanate distributions in modern coastal waters, 2) cyanate production 55 

through biotic and abiotic processes, and 3) cyanate uptake by natural microbial communities. 56 

Methods 57 

Sample Collection and Analysis of N compounds  58 

 Samples were collected in the coastal and oligotrophic North Atlantic Ocean aboard the 59 

R/V Henry B. Bigelow and R/V Hugh Sharp, respectively, using a CTD-rosette equipped with 60 

twelve Niskin bottles.  Water samples for determination of urea, nitrate, and nitrite, ammonium, 61 

and cyanate concentrations were collected from Niskin bottles (0.2 µm filtered) and analyzed 62 

using an Astoria-Pacific nutrient autoanalyzer during the Bigelow cruise.
20

  The autoanalyzer 63 

was equipped with a waveguide during the Sharp cruise to achieve lower detection limits for 64 

nitrate and nitrite.
21

 Ammoniuim concentrations were analyzed using the manual indophenol 65 

method (Bigelow cruise)
22

 or the manual orthophthaldialdehyde method (Sharp cruise)
23

.  66 

Photochemical Experiments 67 
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 Filtered (0.2 µm) water samples were collected from the Dismal Swamp (freshwater site), 68 

Elizabeth River (estuarine site), and Virginia Beach oceanfront (coastal oceanic site, Fig. S3 and 69 

Table S2).  Samples were irradiated in a UV solar simulator for 2, 4, and 8 hours; 8 hours in the 70 

solar simulator equates to approximately 10.2 hours of midday winter sunlight
24,25

.   Each sample 71 

was irradiated in triplicate quartz tubes, one of which was wrapped in aluminum foil as a dark 72 

control.  Photoproduction rates were calculated as the difference between the mean of the 73 

irradiated quartz tubes and the dark control.  To account for differences in source material (DOM 74 

composition) in the different water samples, we normalized photoproduction rates to the initial 75 

absorptivity at 300 nm, which is thought to represent humic substance absorbance,
26

 and we 76 

report both absolute and normalized photoproduction rates (Table S2).    77 

Culture Experiments 78 

 Cultures of two diatoms (Thalassiosira pseudonana and Thalassiosira oceanica) and one 79 

cyanobacterium (Synechococcus FWRI isolate CCFCW 502) were grown in batch on f/2 media
27 

80 

under fluorescent lighting supplied on a 12 h light/ 12 h dark cycle.  The Thalassiosira cultures 81 

were axenic prior to the experiment, but we microscopically confirmed the presence of bacteria 82 

after the cultures had incubated for one week.  Non-autofluorescent bacteria were present in the 83 

Synechococcus cultures both before and during the experiment.   84 

Nitrogen Uptake 85 

 Uptake of N from NH4
+
, NO3

-
, NO2

-
, urea, and cyanate was measured at 3 depths at a 86 

station (72.2 °W, 31.5 °N) in the oligotrophic North Atlantic during the cruise aboard the R/V 87 

Hugh Sharp using stable isotopes as tracers.
28,29

  Incubations were initiated with the addition of 88 

40 nmol N l
-1

 
15

N-labeled substrate, and uptake rates were calculated using a mixing model.
28

  89 
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Expanded methods, results, and discussion describing control experiments for cyanate uptake are 90 

in the Supporting Information. 91 

Results and Discussion 92 

 Vertical profiles of cyanate were measured in the North Atlantic Ocean on the continental 93 

slope near the Mid-Atlantic Bight (MAB, Figure S1). Cyanate, urea, nitrite, and ammonium 94 

concentrations all exhibited surface minima and subsurface maxima (Fig. 1A).  Profiles of this 95 

shape typify biological N cycle intermediates and are generally thought to reflect the balance of 96 

biological consumption in surface waters, production in subsurface waters as a result of 97 

remineralization, and oxidation of organic matter.
30

  Therefore, we infer that cyanate is 98 

biologically labile.  Because cyanate exhibited vertical distributions similar to those of urea, 99 

ammonium, and nitrite, it is likely that cyanate production and consumption processes are similar 100 

to or linked with those N compounds. 101 

 Profiles of ammonium and nitrite generally reflect rates of removal through 102 

phytoplankton uptake in surface waters, ammonification and ammonium and nitrite oxidation 103 

(nitrification) in subsurface waters, and rates of production through excretion and organic matter 104 

degradation.
30,31

  Recent evidence suggests that some cultured nitrifying bacteria can also oxidize 105 

cyanate when ammonium is unavailable.
11

  If this process happens in the environment, it may 106 

partially explain the subsurface cyanate maximum as well as the depletion of cyanate below 107 

approximately 200 m.  The gradual depletion of cyanate in deep waters is likely due to abiotic 108 

and/or biotic degradation of cyanate to ammonium and nitrification, but rates of cyanate 109 

depletion in the mesopelagic have not yet been measured.  Although maximum cyanate 110 

concentrations were lower than those of urea, ammonium, and nitrite, cyanate utilization and 111 

remineralization may still be quantitatively important if its production and consumption are 112 

Page 6 of 24

ACS Paragon Plus Environment

Environmental Science & Technology Letters



 

 7

tightly coupled, as has been shown for ammonium
30

 and labile DON compounds such as 113 

dissolved free amino acids, both of which are generally present at submicromolar concentrations 114 

in most marine systems.
1
 115 

 To determine whether the relationship between cyanate distributions and those of other 116 

simple N compounds is consistent across a highly productive coastal environment, cyanate, 117 

ammonium, nitrite, and nitrate distributions were examined with respect to salinity, temperature 118 

and chlorophyll a concentrations in a physically, biologically, and chemically heterogeneous 119 

shallow coastal region in the Gulf of Maine (GOM).  Vertical profiles were measured at nine 120 

stations along a south to north transect from the continental shelf slope, across Georges Bank 121 

(GB) and the GOM to the coast of Nova Scotia (Fig. 1B, Fig. S1, Table S1). Cyanate was 122 

generally more abundant on GB and in the GOM than in the more oligotrophic Gulf Stream-123 

influenced slope waters.  At stations on the continental slope and interior GOM basin, there were 124 

cyanate peaks below the chlorophyll maximum, similar to what was observed in the MAB (Fig. 125 

1).  However, on GB and at the nearshore station, elevated surface cyanate concentrations were 126 

coincident with weak stratification and high surface chlorophyll a concentrations.  On GB, 127 

cyanate and chlorophyll a concentrations were also high throughout the water column all the way 128 

to the bottom suggesting a possible sedimentary source of cyanate (Fig. 1B).  At these stations 129 

ammonium, nitrite, and nitrate were depleted in surface waters (Fig. S2).   130 

 We evaluated two potential in situ sources of cyanate that may in part explain the 131 

observed cyanate distributions: organic matter degradation and photoproduction.  To determine 132 

whether cyanate could be produced by organic matter degradation, cyanate concentrations were 133 

measured in cultures of a coastal marine cyanobacterium, Synechococcus (strain CCFWC 502), 134 

and a coastal and an oceanic strain of a ubiquitous diatom genus, Thalassiosira, which is 135 
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commonly found in the study region,
32

 T. pseudonana and T. oceanica, during exponential and 136 

stationary growth phases. While cyanate concentrations always remained near the limit of 137 

detection (0.4 nM) in Synechococcus cultures, cyanate concentrations in the Thalassiosira 138 

cultures increased linearly as biomass decreased during late stationary phase (Fig. 2A) 139 

suggesting that cyanate was produced during the decay of these organisms, potentially by 140 

contaminating bacteria, or that it was released by senescent cells.  The lack of cyanate 141 

accumulation in Synechococcus cultures could have been because it wasn’t produced or because 142 

its production and consumption were tightly coupled.  To our knowledge, the genome of 143 

Synechococcus CCFWC 502 has not been sequenced, but another Synechococcus isolate 144 

(WH8102) has been cultured on cyanate as the sole source of N.
33

 145 

 The vertical zonation of microbial communities with respect to light, physical gradients, 146 

and availability of nitrogenous substrates results in similar segregation of nutrient regeneration 147 

processes and accumulation of N cycle intermediates by depth within and below the euphotic 148 

zone.
34

  In vertical profiles collected from the MAB (Fig. 1A), the cyanate maximum was below 149 

that of urea indicating that cyanate might be produced from biotic urea decomposition, analogous 150 

to the observation that nitrite accumulates below the ammonium maximum as a result of 151 

nitrification.
34

  There is currently no known mechanism for biotic conversion of urea to cyanate, 152 

but abiotic decomposition of biologically produced urea and carbamoyl phosphate have been 153 

proposed as mechanisms of cyanate production in marine systems.
33

  Because C-N linkages are 154 

so common in organic matter it is also likely that there are other pathways of cyanate production 155 

and decomposition, both biotic and abiotic, that have yet to be discovered.  Many ubiquitous 156 

phytoplankton are known to release labile metabolic intermediates during stationary and late 157 

exponential phase
1
 or when stressed

35
 and so it is possible that T. pseudonana and T. oceanica 158 

Page 8 of 24

ACS Paragon Plus Environment

Environmental Science & Technology Letters



 

 9

directly released cyanate or that they released urea, carbamoyl phosphate, or other labile DON 159 

compounds that then degraded to cyanate, possibly by prokaryotic heterotrophs.  Phytoplankton 160 

release could explain the elevated cyanate concentrations correlated with high chlorophyll 161 

fluorescence on GB and at the nearshore end of the GOM transect.  Prokaryotic organic matter 162 

degradation could also explain the observed cyanate accumulation below the subsurface 163 

chlorophyll maxima, as well as production of cyanate in the diatom cultures.  GOM coastal 164 

waters experience dense algal blooms
36

 which produce large amounts of labile dissolved organic 165 

matter including cyanate and/or cyanate precursors.  Cyanate can then accumulate in place or 166 

nearby, depending on the rate of its production and circulation patterns.   167 

 Cyanate photoproduction was observed in all samples, and rates ranged from 0.4 to 14 168 

nM h
-1

 (Fig. 2B, Table S2), which are similar in magnitude to ammonium and amino acid 169 

photoproduction rates.
37

  Photoproduction of cyanate could have contributed to the elevated 170 

surface cyanate concentrations on GB and at the nearshore end of the GOM transect, particularly 171 

if biotic uptake was lower than photoproduction as has been observed for other simple organic 172 

compounds.
38

  High cyanate concentrations near the coast relative to continental slope waters 173 

(Fig. 1B) could also indicate terrestrial cyanate sources, such as urban, industrial, and 174 

agricultural runoff and/or decomposition of N compounds therein (such as urea and organic 175 

matter) to cyanate.
12,39

  Cyanate is not monitored in industrial or municipal wastewater 176 

discharges
40

 so it is not known whether they are significant sources of cyanate to receiving 177 

waters.  However, urea discharged from agricultural, urban, and wastewater sources
39

 could 178 

contribute cyanate to estuarine and coastal systems.   179 

 To evaluate whether microbial assemblages can utilize cyanate, and whether cyanate N 180 

contributes substantially to microbial N uptake, community cyanate uptake rates were compared 181 
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with those of nitrate, nitrite, ammonium, and urea, at three depths at an oligotrophic station in the 182 

North Atlantic (Fig S1).  Cyanate and total N uptake were higher near the surface (cyanate 183 

concentrations less than 1 nM) than at the chlorophyll fluorescence maximum where cyanate 184 

concentrations were highest (Fig. 3A).  Cyanate contributed up to 10% of total measured 185 

community N uptake, and cyanate uptake rates were comparable to those of nitrate and nitrite but 186 

lower than those of ammonium and urea (Fig. 3B, Table S3).  Cyanate turnover times were 1.6 187 

and 76 hours in surface waters and at the chlorophyll maximum (103 m), respectively, and were 188 

shorter than turnover times calculated for nitrate and nitrite (Table S3). 189 

 The distribution of cyanate and the similarity in magnitude of production and community 190 

uptake rates relative to those of other dissolved N compounds suggests that cyanate may be an 191 

important component of the marine nitrogen cycle and that its production and consumption are 192 

tightly coupled.  Here we provide the first comprehensive set of measurements comparing the 193 

distributions of cyanate to those of other biogeochemically important N compounds in the ocean.  194 

We also demonstrate for the first time that cyanate can be produced via a biological source and 195 

photoproduction, and that cyanate uptake may be quantitatively important in the environment.  196 

However, many questions remain regarding the biotic and abiotic sources and sinks of cyanate in 197 

disparate marine environments, the organisms and biochemical pathways that produce and 198 

consume cyanate in the present day ocean, regional and seasonal trends in cyanate 199 

biogeochemistry, and its possible role in the evolution of life. 200 

 201 

  202 
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 203 

Figure 1. Cyanate Distribution in the Coastal North Atlantic.  A) Vertical profiles of density 204 

(black dashed line, sigma theta, kg m
-3

), chlorophyll a (grey solid line, mg m
-3

), nitrate (NO3
-
) 205 

(µM), nitrite (NO2
-
) (µM), ammonium (NH4

+
) (µM), urea (µM), and cyanate (OCN

-
) (µM) from 206 

a Mid-Atlantic Bight station. The dashed vertical lines are the method detection limits (S/N=3), 207 

and the dashed horizontal line indicates the depth of the chlorophyll maxima.  Concentrations 208 
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below the detection limit were plotted as equal to the detection limit.  Error bars are ± 1 standard 209 

deviation.  B) Chlorophyll a concentrations (mg m
-3

), temperature (
o
C), cyanate concentrations 210 

(nM) and NO3
-
 concentrations (µM) along a transect across the Gulf of Maine from a nearshore 211 

station, across the Gulf of Maine (GOM) and over Georges Bank (GB).  Grey lines (temperature 212 

and chlorophyll) and dots (NO3
-
 and OCN

-
) represent sampling locations, and the colored 213 

contours represent interpolations of the given parameters between those data points.  See Fig. S1 214 

for station map. 215 

  216 
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 217 

218 

 219 

Figure 2.  Cyanate Production.  Production of cyanate in cultures of A) Thalassiosira oceanica 220 

and B) Thalassiosira pseudonana.  In vivo fluorescence was used as a proxy for biomass and is 221 
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shown in black, and cyanate concentrations are shown in grey.  Error bars are ± 1 standard 222 

deviation (n=2).  Cyanate production rates during the linear portions were 5 and 9 nM d
-1

 in T. 223 

pseudonana and T. oceanica cultures, respectively (r
2
 0.97 and 0.93, respectively; slope p-values  224 

<0.0001).  C) Photochemical production of cyanate in fresh (open circles), estuarine (squares), 225 

and coastal oceanic (closed circles) sterile (0.2 µm filtered) water where cyanate concentrations 226 

were calculated as the difference between the mean of the irradiated tubes and the dark controls. 227 

Error bars are ± 1 standard deviation (n=2). 228 

  229 
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 230 

Figure 3.  Cyanate and Total Nitrogen Uptake in at the North Atlantic Oligotrophic Station.  A) 231 

Cyanate uptake (closed circles), cyanate concentration (open circles), and chlorophyll 232 

fluorescence (dashed line).  Error bars are ± 1 standard deviation (n=3).  B) Total N uptake at 233 

each depth as the sum of ammonium (diagonal lines), nitrate (solid black), nitrite (solid white), 234 

urea (solid grey), and cyanate (black and white checked) uptake.   235 

  236 
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