

Age Dating Oil and Gas Wastewater Spills Using Radium Isotopes and Their Decay Products in Impacted Soil and Sediment

Nancy Lauer and Avner Vengosh*

Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States

Supporting Information

ABSTRACT: Spills from oil and gas operations can contaminate water resources, sediment, and soil, but in many cases, information about spill sources and environmental impacts is not available. Here we present age dating methods to estimate the time since the accumulation of radium in impacted soils and sediments from oil and gas wastewater spills. The retention of unsupported ²²⁶Ra and ²²⁸Ra from spill water to soil and sediment and the ingrowth of Ra progeny result in three independent age dating methods using the ²²⁸Th/²²⁸Ra, ²¹⁰Pb/²²⁶Ra, and ²²⁸Ra/²²⁶Ra activity ratios. We tested the ²²⁸Th/²²⁸Ra method on spill sites in North Dakota and West Virginia, where the dates of the spills are known. The ²²⁸Th/²²⁸Ra method yields ages similar to the documented spill ages and can reveal the initial ²²⁸Ra/²²⁶Ra ratios of the spill waters, validating the notion that Ra isotopes and their decay products in contaminated soils and sediments can reveal the ages and origins of spills.

INTRODUCTION

One of the environmental risks associated with the rise of unconventional shale gas and tight oil extraction by hydraulic fracturing is the increased frequency of inadvertent releases of oil and gas wastewater (OGW) to the environment.^{1,2} OGW includes produced and flowback waters that are composed of injected water and naturally occurring brines from the targeted formations. In addition to salts, trace elements, and organics,^{3–6} these fluids typically contain elevated levels of radium isotopes, ²²⁶Ra ($t_{1/2}$ = 1600 years) and ²²⁸Ra ($t_{1/2}$ = 5.75 years), with total Ra activities (²²⁸Ra+²²⁶Ra) of up to about 400 Bq/L reported in Marcellus waters.⁷ The combination of high U concentrations in shales,^{8,9} reducing and highly saline conditions that enhance mobilization of radium from the host rocks to formation waters, and the differential solubility of other U-Th series elements results in U–Th series disequilibrium in formation waters with high Ra yet low Th and U activities.^{7,10,11} Following the release of Ra-bearing OGW to the environment through spills or disposal, the unsupported Ra accumulates in the soil and sediment through adsorption as well as coprecipitation and generation of authigenic Ra-rich barite.¹²⁻¹⁵

Previous studies have recognized applications of U–Th series disequilibrium in OGW associated with conventional oil and gas. Radium isotopes and radium–daughter disequilibrium have been used to estimate the age of Ra-bearing barite in contaminated soils, oil field sludges, and scales.^{16,17} Additionally, ²²⁸Ra in pit sediments was used as an indicator of the recent formation of Ra-bearing barite and burial rates,¹⁵ and ²²⁸Ra–²²⁸Th disequilibrium was used to detect the age of contamination in soils and stream sediments in the vicinity of ponds used to store produced water.¹⁷ The ability to verify the

age and source of contamination is vital for linking contamination directly to oil and gas operations. Additionally, distinguishing recent contamination related to hydraulic fracturing from older contamination related to conventional oil and gas operations is particularly challenging in areas with a history of conventional oil and gas exploration and new unconventional development. For example, reports of elevated radioactivity in stream sediments from OGW disposal sites in western Pennsylvania¹² have triggered debate about whether the high radioactivity results from disposal of recent hydraulic fracturing fluids or previous conventional OGW.^{18,19}

While previous studies have used Ra isotopes and their decay products to detect the age of soil and sediment contamination associated with storage and leakage of conventional OGW,^{15–17} here we test the methods for age dating OGW spills associated with unconventional energy development. We present three age dating methods based on the decay of unsupported Ra and resulting changes in the ²²⁸Th/²²⁸Ra, ²¹⁰Pb/²²⁶Ra, and ²²⁸Ra/²²⁶Ra activity ratios in impacted soils and sediments (all ratios presented hereafter are activity ratios). We demonstrate the validity of the ²²⁸Th/²²⁸Ra method for detecting the age of recent events in two case studies where sediment and soil have been impacted by unconventional OGW spills.

Received:	March 27, 2016
Revised:	April 26, 2016
Accepted:	April 28, 2016
Published:	April 28, 2016

MATERIALS AND METHODS

Grab soil and sediment samples were collected from two spill sites in West Virginia (n = 1 spill soil; n = 1 background soil) and North Dakota²⁰ (n = 3 spill sediments; n = 3 upstream and downstream sediments) in January 2014 and July 2015, respectively. The Tyler County spill in West Virginia occurred on January 2, 2014, when a storage tank on a drill pad exploded, flooding the surrounding area with flowback water. The Blacktail Creek spill in North Dakota, caused by a pipeline leak, was discovered on January 6, 2015, and released 3 million gallons of brine near the Blacktail Creek, a tributary of the Missouri River in Williams County, North Dakota.

Oven-dried soil and sediment samples (30-60 g) were packaged in Petri style dishes (6.5 cm in diameter, 2 cm in height) that were wrapped with electrical tape and coated in wax to prevent the escape of gaseous ²²²Rn ($t_{1/2}$ = 3.8 days). Samples were incubated for at least 21 days to allow time for ²²⁶Ra to reach secular equilibrium with its great granddaughter, ²¹⁴Pb, prior to being run on a Canberra broad energy germanium gamma detector for \sim 24 h. ²²⁸Ra was determined through the ²²⁸Ac peak (911 kEv), ²²⁶Ra through the ²¹⁴Pb peak (351 kEv), ²²⁸Th ($t_{1/2}$ = 1.9 years) through the ²¹²Pb peak (239 kEv), and ²¹⁰Pb $(t_{1/2} =$ 22.2 years) directly through its own peak at 47 kEv. Activities were calculated by manually summing peak counts, subtracting background counts, and correcting for detector efficiency. Efficiencies were determined using a U-Th ore reference material (CCRMP DL-1a) packaged and incubated in the same geometry as the samples. We corrected for sample adsorption of the low-energy ²¹⁰Pb gamma emission using a ²¹⁰Pb point source.²¹

RESULTS AND DISCUSSION

U–Th Series Radionuclides in Spill Sites. Elevated activity concentrations of ²²⁸Ra and ²²⁶Ra (total Ra up to 4685 Bq/kg for Blacktail Creek²⁰ and 343 Bq/kg for Tyler County) were observed in sediments and soils from both spill sites compared to background sites (total Ra up to 47 Bq/kg for Blacktail Creek²⁰ and 101 Bq/kg for Tyler County), indicating the accumulation of Ra in impacted soils and sediments following spills. In all spill soil and sediment samples, ²¹⁰Pb/²²⁶Ra (0.07–0.41) and ²²⁸Th/²²⁸Ra (0.33–0.82) ratios were less than 1 (uncorrected for background activities), indicating disequilibrium between radium isotopes and their corresponding daughters. Additionally, ²²⁸Ra/²²⁶Ra ratios in spill sediments (0.24–0.70) were found to be lower than ²²⁸Ra/²²⁶Ra ratios in background samples (0.75–1.0) (Table S1).

S1). 228 Ra/ 226 Ra ratios in soils and sediments impacted by OGW spills reflect the ratios of the OGW source combined with 228 Ra decay, while the 210 Pb/ 226 Ra and 228 Th/ 228 Ra ratios reflect the subsequent ingrowth of the Ra progeny with time. We conducted time series measurements (n = 3) of a single soil sample impacted by the Tyler County spill. We found that, with time, estimated unsupported 226 Ra activity is constant, unsupported 228 Ra activity is decreasing, and 228 Th is approaching equilibrium with 228 Ra (Figure 1). 210 Pb ingrowth over this relatively short time scale was not statistically significant; however, one would expect 210 Pb activities to be increasing from 226 Ra decay. Given the known half-lives of these radionuclides and their observed ingrowth and decay, the 228 Th/ 228 Ra, 210 Pb/ 226 Ra, and 228 Ra ratios in contaminated soils and sediments can be potentially used to date a spill event.

Figure 1. Time series data of the ingrowth and decay of excess U–Th series radionuclides in impacted soil from the Tyler County, West Virginia, spill. Data points represent the same sample measured on three different occasions. Black curves represent modeled decay and ingrowth of respective radionuclides. Excess activities were calculated by subtracting an estimated background of 31 Bq/kg from ²²⁸Ra, ²²⁶Ra, and ²²⁸Th activities, and 98 Bq/kg from ²¹⁰Pb activities. Background activities were back-calculated using knowledge of when the spill occurred. ²¹⁰Pb ingrowth over this time scale was not statistically significant, further indicating that the ²¹⁰Pb/²²⁶Ra ratio is not suitable for age dating young spills. Error bars represent 95% confidence intervals.

Using the ²²⁸Th/²²⁸Ra, ²¹⁰Pb/²²⁶Ra, and ²²⁸Ra/²²⁶Ra ratios directly measured in soil and sediment to calculate spill age can be misleading because of the natural occurrence of these radionuclides from in situ U and Th decay. Therefore, excess ²²⁶Ra, ²²⁸Ra, ²¹⁰Pb, and ²²⁸Th relative to background values must be estimated and accounted for in age dating calculations for spills of unknown age, unless the magnitude of Ra accumulation and daughter ingrowth are so high that background levels are negligible compared to contamination levels. Background radionuclides in soil and sediment can be estimated on the basis of the average activity concentrations measured in nearby uncontaminated soils or upstream sediments, assuming that background samples have a similar grain size distribution, mineralogy, and degree of weathering to spill samples.

²²⁸Th/²²⁸Ra Method. The ²²⁸Th/²²⁸Ra method relies on the decay of ²²⁸Ra into its granddaughter ²²⁸Th (Figure 2A). This model assumes that Th is insoluble in the formation water, and therefore, ²³²Th and ²²⁸Th activities in the OGW spill water are zero. The insolubility of Th in brines and other natural waters has been well documented in previous studies.^{22,23} Because ²²⁸Ra $(t_{1/2} = 5.75 \text{ years})$ cannot be considered stable over this time scale, ²²⁸Th approaches transient equilibrium with ²²⁸Ra. Transient equilibrium is a condition under which the half-life of the daughter is shorter than that of the parent but cannot be considered negligible. As a result, the ²²⁸Th/²²⁸Ra dating method accounts for both the ingrowth of ²²⁸Th and the decay of ²²⁸Ra, and the ²²⁸Th/²²⁸Ra ratio in contaminated soils and sediments will approach an equilibrium value of ~ 1.5 after approximately 20 years (Figure S2). The relationship between the ²²⁸Th/²²⁸Ra activity ratio and time can be expressed using the equation $^{228}\text{Th}/^{228}\text{Ra} = \lambda_{^{228}\text{Th}}/(\lambda_{^{228}\text{Th}}^{-1} - \lambda_{^{228}\text{Ra}}^{-228})[1 - e^{(\lambda_{^{228}\text{Th}}^{-1} - \lambda_{^{228}\text{Th}}^{-1})t}]$, where λ is the decay constant for the respective nuclides and t is time (this notation is consistent for all equations hereafter).

The 1.9 year half-life of ²²⁸Th suggests that the ²²⁸Th/²²⁸Ra dating method is useful for dating relatively recent spills up to \sim 10 years old. The major limitation of this method is the

Figure 2. Modeled ingrowth and decay of U–Th radionuclides in sediments affected by OGW spills for the three proposed age dating methods. (A) Ingrowth of 228 Th as a result of 228 Ra decay. After approximately 20 years, 228 Th 228 Ra ratios will approach 1.5, indicating transient equilibrium. (B) Ingrowth of 210 Pb as a result of 226 Ra decay. After approximately 100 years, 210 Pb $^{/226}$ Ra ratios will approach \sim 1, indicating secular equilibrium. (C) Decay of unsupported 228 Ra and persistence of 226 Ra with time. 228 Ra $^{/226}$ Ra ratios will approach 1/infinity after approximately 40 years.

relatively lower levels of ²²⁸Ra compared to that of ²²⁶Ra in OGW generated from the shale reservoirs, including the Marcellus (²²⁸Ra/²²⁶Ra ~ 0.2).⁷ Therefore, in smaller spills of unconventional fluids, excess ²²⁸Ra activities may be close to supported (background) ²²⁸Ra activities. The ²²⁸Ra/²²⁸Th ratio is most effective for dating recent, large spills where the magnitude of Ra accumulation in the soil and sediment is high.

²¹⁰*Pb*/²²⁶*Ra Method.* The ²¹⁰*Pb*/²²⁶*Ra* method is based on the decay of ²²⁶*Ra into its short-lived daughters and eventually* ²¹⁰*Pb* (Figure 2B). This model assumes that Pb is negligible in OGW such that the original ²¹⁰*Pb*/²²⁶*Ra ratio is zero.* The ²¹⁰*Pb*/²²⁶*Ra dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method can be modeled using the equation* ²¹⁰*Pb*/²²⁶*Ra a dating method.* The long half-life of ²²⁶*Ra compared to that of* ²¹⁰*Pb* allows for the simplification of this model to ²¹⁰*Pb*/²²⁶*Ra a and* ²¹⁰*Pb* (i.e., ²¹⁰*Pb*/²²⁶*Ra ~ 1) will be reached after approximately 100 years, after which the ²¹⁰<i>Pb*/²²⁶*Ra ratio is no longer a sensitive dating method.* Additionally, because of the ~22 year half-life of ²¹⁰*Pb*, ²¹⁰*Pb ingrowth for detecting recent spills (<5 years) may not be statistically significant unless initial Ra adsorption was relatively high.*

Several limitations arise in attempting to implement the 210 Pb/ 226 Ra dating method for spills. First, the escape of gaseous 222 Rn can reduce the level of accumulation of 210 Pb. 222 Rn emanation coefficients for disaggregated soil were found to range from 0.15 to 0.25, and 222 Rn emanation is expected to be more effective when Ra is distributed on grain surfaces. 24,25 The second limitation is the wider range of 210 Pb activities that can be naturally present in soil due to fallout 210 Pb. For example, Moore and Poet²⁶ documented 210 Pb in surface soils ranging from 40 to 250 Bq/kg that were ~2–6 times greater than measured 226 Ra activities. The third limitation is the assumption of negligible 210 Pb in OGW. While 210 Pb activities are often not reported, detectable 210 Pb in geothermal brines has been measured up to ~100 Bq/L, 27,28 suggesting that lead solubility can vary in OGW.

 228 Ra/ 226 Ra Method. 228 Ra decays with a short half-life of 5.75 years compared to that of 226 Ra ($t_{1/2} = 1600$ years). As a result, the 228 Ra/ 226 Ra ratio in contaminated soils and sediments will decrease with time as unsupported 228 Ra decays and 226 Ra

remains essentially stable (Figure 2C). If the formation source of the OGW is known, then the original ²²⁸Ra/²²⁶Ra ratios can be estimated, and the change in the ²²⁸Ra/²²⁶Ra activity ratio can be modeled with time according to the equation ²²⁸Ra/²²⁶Ra = $(^{228}Ra/^{226}Ra)_{o}e^{-\lambda_{228Ra}t}$, where $(^{228}Ra/^{226}Ra)_{o}$ is the original ²²⁸Ra/²²⁶Ra ratio of the spilled fluid at time zero. This method is appropriate for dating spills up to ~40 years old, after which nearly all unsupported ²²⁸Ra will have decayed. The major limitation of the ²²⁸Ra/²²⁶Ra method is defining the

The major limitation of the ²²⁸Ra/²²⁶Ra method is defining the initial ratio of the spilled fluid, which can result in large errors.¹⁶ Typically, OGWs from unconventional oil and gas operations have a low ²²⁸Ra/²²⁶Ra ratio of ~0.2 that reflects the low Th/U ratio of shale formations.⁷ Conventional OGWs are often extracted from sandstone formations and consequently have higher ²²⁸Ra/²²⁶Ra ratios that reflect the higher Th/U ratios of sandstones (~1).^{29–31} However, these ratios can vary substantially, from ~0.1 to 0.3 for shale reservoirs and from 0.5 to 2.0 for sandstone reservoirs. If the source of the spill water is unknown or if the initial ²²⁸Ra/²²⁶Ra ratio of the spill water cannot be well-defined, we propose that the ²²⁸Ra/²²⁶Ra ratio is more useful as an indicator of the source of the fluid. The spill age can be estimated by ²²⁸Th/²²⁸Ra or ²¹⁰Pb/²²⁶Ra ratios, and the original ²²⁸Ra/²²⁶Ra ratio can be calculated to reveal the source of contamination (Figure 3).

Application to Oil and Gas Wastewater Spills. Results from unconventional OGW-impacted soils and sediments from North Dakota and West Virginia show that age dating techniques tested in this study could accurately evaluate the age of the spills. Both spills analyzed in this study have occurred in the past three years, making the 228Th/228Ra dating method the more appropriate dating tool because of the relatively shorter halflife of ²²⁸Th compared to that of ²¹⁰Pb, and the higher sensitivity of the ²²⁸Th/²²⁸Ra ratio over this time scale. For the Tyler County spill, we back-calculated background activities of ²²⁸Ra and ²²⁸Th of 31 Bq/kg, based on knowledge of when the spill occurred, as the single background soil sample was not sufficient to estimate background activities. The time series measurements of a single sample yield ages of 0.2 \pm 0.1, 1.5 \pm 0.4, and 2.4 \pm 0.5 years (actual times between the documented spill date and sample analysis were 0.2, 1.8, and 2.1 years, respectively). For the Blacktail Creek spill, three background stream sediments were

Figure 3. Background-corrected 228 Ra/ 226 Ra vs 228 Th/ 228 Ra in spill sediments from two sites in West Virginia (blue) and North Dakota (green). Lines represent modeled curves, and tick marks represent years. The use of the two independent age dating methods elucidates the original 228 Ra/ 226 Ra ratio of the OGW spill water and provides a constraint for detecting the source of the spill.

used to characterize the ²²⁸Ra and ²²⁸Th background (18 ± 5 Bq/kg). The background-corrected ²²⁸Ra/²²⁸Th ratios indicate an average age of 1.1 ± 0.1 years, which is consistent with the reported spill date (actual time between the documented spill date and sample analysis is 0.8 year). Using these ages to back-calculate the initial ²²⁸Ra/²²⁶Ra ratios, we find an initial ²²⁸Ra/²²⁶Ra ratio in the North Dakota spill water of ~0.8 and in the West Virginia spill water of ~0.2 (Figure 3). These ratios are relatively consistent with OGW from the Bakken and Marcellus formations, respectively.^{7,20}

Given the high, unsupported Ra activities in OGW, the retention of radium in soil and sediments, and the different time scales for the ingrowth of Ra progeny, we demonstrate three independent age dating methods that can detect the age of OGW spills using impacted soil and sediment. We demonstrate the validity of the 228 Th/ 228 Ra age dating method for dating relatively young OGW spills, which is critical for linking spill contamination to recent unconventional oil and gas operations.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.estlett.6b00118.

Two figures and one table (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: vengosh@duke.edu. Phone: 919-681-8050. Fax: 919-684-5833.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the National Science Foundation (EAR-1441497) and the Park Foundation. We thank Dr. James Kaste for laboratory use at the College of William and Mary and Jennifer Harkness for help in sample collection. We also thank three anonymous reviewers who greatly helped to improve the quality of the manuscript.

REFERENCES

(1) Vengosh, A.; Jackson, R. B.; Warner, N.; Darrah, T. H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. *Environ. Sci. Technol.* **2014**, *48* (15), 8334–8348.

(2) Vidic, R. D.; Brantley, S. L.; Vandenbossche, J. M.; Yoxtheimer, D.; Abad, J. D. Impact of shale gas development on regional water quality. *Science* **2013**, *340* (6134), 1235009.

(3) Chapman, E. C.; Capo, R. C.; Stewart, B. W.; Kirby, C. S.; Hammack, R. W.; Schroeder, K. T.; Edenborn, H. M. Geochemical and strontium isotope characterization of produced waters from Marcellus shale natural gas extraction. *Environ. Sci. Technol.* **2012**, *46* (6), 3545–3553.

(4) Maguire-Boyle, S. J.; Barron, A. R. Organic compounds in produced waters from shale gas wells. *Environ. Sci. Processes Impacts* **2014**, *16* (10), 2237–2248.

(5) Orem, W.; Tatu, C.; Varonka, M.; Lerch, H.; Bates, A.; Engle, M.; Crosby, L.; McIntosh, J. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. *Int. J. Coal Geol.* **2014**, *126*, 20–31.

(6) Haluszczak, L. O.; Rose, A. W.; Kump, L. R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. *Appl. Geochem.* **2013**, *28*, 55–61.

(7) Rowan, E.; Engle, M.; Kirby, C.; Kraemer, T. Radium content of oil-and gas-field produced waters in the Northern Appalachian Basin (USA)—summary and discussion of data. USGS Scientific Investigations Report **2011**, *5135*, 2011.

(8) Bloxam, T. Uranium, thorium, potassium and carbon in some black shales from the South Wales coalfield. *Geochim. Cosmochim. Acta* **1964**, 28 (7), 1177–1185.

(9) Swanson, V. E.; Swanson, V. E. Geology and geochemistry of uranium in marine black shales: A review; U.S. Government Printing Office: Washington, DC, 1961.

(10) Sturchio, N.; Banner, J.; Binz, C.; Heraty, L.; Musgrove, M. Radium geochemistry of ground waters in paleozoic carbonate aquifers, Midcontinent, USA. *Appl. Geochem.* **2001**, *16* (1), 109–122.

(11) Nelson, A. W.; Eitrheim, E. S.; Knight, A. W.; May, D.; Mehrhoff, M. A.; Shannon, R.; Litman, R.; Burnett, W. C.; Forbes, T. Z.; Schultz, M. K. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: An analysis of produced fluids from the Marcellus shale. *Environ. Health Perspect.* **2015**, *123* (7), 689.

(12) Warner, N. R.; Christie, C. A.; Jackson, R. B.; Vengosh, A. Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. *Environ. Sci. Technol.* **2013**, *47* (20), 11849–11857.

(13) Nathwani, J. S.; Phillips, C. R. Adsorption of ²²⁶Ra by soils (i). *Chemosphere* **1979**, *8* (5), 285–291.

(14) Landa, E. R.; Reid, D. F. Sorption of radium-226 from oilproduction brine by sediments and soils. *Environ. Geol.* **1983**, *5* (1), 1–8.

(15) Zielinski, R. A.; Budahn, J. R. Mode of occurrence and environmental mobility of oil-field radioactive material at us geological survey research site b, osage-skiatook project, Northeastern Oklahoma. *Appl. Geochem.* **2007**, *22* (10), 2125–2137.

(16) Zielinski, R.; Otton, J.; Budahn, J. Use of radium isotopes to determine the age and origin of radioactive Barite at oil-field production sites. *Environ. Pollut.* **2001**, *113* (3), *299*–309.

(17) Zielinski, R. A.; White, G. J.; Otton, J. K. Chemical and radiometric assessment of NORM in soils and sediments' contacted by produced water, Teapot Dome, Wyoming. Proceedings of the 5th International Petroleum Environmental Conference, Albuquerque, NM, October 20–23, 1998.

(18) Fracking linked to radioactive river water in PA. USA Today, 2013 (http://www.usatoday.com/story/news/nation/2013/10/02/ fracking-radioactive-water-pennsylvania/2904829/).

Environmental Science & Technology Letters

(19) Five facts about Duke's latest anti-shale study. *Energy In Depth*, 2013 (http://energyindepth.org/marcellus/five-facts-about-dukes-latest-anti-shale-study/).

(20) Lauer, N. E.; Harkness, J. S.; Vengosh, A. Brine spills associated with unconventional oil development in North Dakota. *Environ. Sci. Technol.* **2016**, DOI: 10.1021/acs.est.5b06349.

(21) Cutshall, N. H.; Larsen, I. L.; Olsen, C. R. Direct analysis of ²¹⁰Pb in sediment samples: Self-absorption corrections. *Nucl. Instrum. Methods Phys. Res.* **1983**, 206 (1), 309–312.

(22) The environmental behavior of radium: Revised edition; International Atomic Energy Agency: Vienna, 2014.

(23) Langmuir, D.; Herman, J. S. The mobility of thorium in natural waters at low temperatures. *Geochim. Cosmochim. Acta* **1980**, 44 (11), 1753–1766.

(24) Greeman, D. J.; Rose, A. W. Factors controlling the emanation of radon and thoron in soils of the Eastern U.S.A. *Chem. Geol.* **1996**, *129* (1-2), 1-14.

(25) Krishnaswami, S.; Seidemann, D. E. Comparative study of ²²²Rn, ⁴⁰Ar, ³⁹Ar and ³⁷Ar leakage from rocks and minerals: Implications for the role of nanopores in gas transport through natural silicates. *Geochim. Cosmochim. Acta* **1988**, *52* (3), 655–658.

(26) Moore, H.; Poet, S. Pb-210 fluxes determined from Pb-210 and Ra-226 soil profiles. J. Geophys. Res. Oceans and Atmospheres 1976, 81 (6), 1056–1058.

(27) Hammond, D. E.; Zukin, J. G.; Ku, T. L. The kinetics of radioisotope exchange between brine and rock in a geothermal system. *J. Geophys. Res. B: Solid Earth* **1988**, 93 (B11), 13175–13186.

(28) Zukin, J. G.; Hammond, D. E.; Teh-Lung, K.; Elders, W. A. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea geothermal field, Southeastern California. *Geochim. Cosmochim. Acta* **1987**, *51* (10), 2719–2731.

(29) Fisher, R. S. Geologic and geochemical controls on naturally occurring radioactive materials (NORM) in produced water from oil, gas, and geothermal operations. *Environ. Geosci.* **1998**, *5* (3), 139–150.

(30) Kraemer, T. F.; Reid, D. F. The occurrence and behavior of radium in saline formation water of the US Gulf Coast region. *Chem. Geol.* **1984**, 46 (2), 153–174.

(31) Vengosh, A.; Hirschfeld, D.; Vinson, D.; Dwyer, G.; Raanan, H.; Rimawi, O.; Al-Zoubi, A.; Akkawi, E.; Marie, A.; Haquin, G.; Zaarur, S.; Ganor, J. High naturally occurring radioactivity in fossil groundwater from the Middle East. *Environ. Sci. Technol.* **2009**, *43* (6), 1769–1775.