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Abstract:  22 

Titanium has been widely used as a dimensionally stable anode in the electrolysis 23 

industry because of its excellent corrosion–resistance, conductivity, and scalability. 24 

However, due to its poor biocompatibility and low performance as bioanode, it has 25 

drawn little attention in the field of microbial fuel cells (MFCs). This study reports an 26 

efficient way to convert titanium electrode into a high-performance anode for MFCs, 27 

in-situ growth of titanium dioxide nanotubes (TNs) on its surface. After TNs 28 

modification, the titanium surface became rougher, more hydrophilic, and more 29 

conducive for anodic biofilm formation. The maximum current density achieved on 30 

this TNs-modified titanium electrode was 12.7 A m−2, which was 190-fold higher than 31 

the bare Titanium electrode and even higher the most-commonly used carbon felt 32 

electrode. Therefore, the high conductivity, corrosion-resistance, and current density 33 

make TNs-modified titanium electrode a promising and scalable anode for MFCs. 34 

  35 

  36 
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INTRODUCTION 37 

Microbial fuel cell (MFC) is an emerging technology that can directly convert organic 38 

waste into electrical energy through the metabolism of electrochemically active 39 

microorganisms (EAMs).1 In past decades, remarkable improvements have been 40 

achieved in MFCs in terms of increasing power/current density, finding new electrode 41 

materials, optimizing reactor configurations, and understanding EAMs. However, 42 

scaling this technology for practical application is still limited by low power density 43 

and high capital cost. The electrodes are the core components that determine the cost 44 

and the performance of MFCs. Thus, finding cost-effective electrode materials has 45 

drawn increased recent attention and a variety of novel electrodes have been 46 

reported.2  47 

Due to their excellent biocompatibility and chemical stability, carbon-based 48 

electrodes in various configurations (e.g. paper, cloth, felt, foam, brush) have been 49 

extensively used in MFCs.3 However, their low electrical conductivity and mechanical 50 

strength remain major obstacles for their practical application at larger scale. 51 

Consequently, metal-based electrodes, such as gold, silver, copper, nickel, cobalt, 52 

stainless steel, and titanium, have been recently tested as anodes.3-8 Among these 53 

metals, copper and stainless steel are considered as the most promising anode 54 

materials as they are relative cheap, scalable, and producing comparable current 55 

density to that of graphite electrode.4,8 However, the relative low corrosion resistance 56 

of copper and stainless steel means that they cannot be used in an uncontrolled 57 

wastewater treatment environment (e.g. high concentration of ammonia nitrogen, 58 

salinity, oxidant and hydrogen ions) but, rather, have to be used in a well-controlled 59 

environment (e.g. more reducing environment).9 Therefore, it is still of great 60 

importance to find stable and cost-effective metal-based electrodes for MFCs.   61 

Titanium has been widely used as a dimensionally stable anode in the electrolysis 62 

industry because of its excellent corrosion resistance, mechanical properties, and 63 

electric conductivity.
10,11

 However, in previous studies, the performance of titanium as 64 
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anode of MFCs was so poor that it was mainly used as current collectors for carbon 65 

electrodes. The prior poor performance of titanium anodes in MFCs is likely because 66 

the passive layer on titanium makes them unfavorable for EAM biofilm formation and 67 

inhibits electron transfer between microorganisms and the electrode.4, 12 Hence, 68 

surface modification of titanium with biocompatible materials might be an effective 69 

way to convert it into a high-performance anode for MFCs. TiO2 nanoparticles are 70 

biocompatible and stable, and recently have been used to modify carbon electrode to 71 

improve the power output of MFCs.13,14 Moreover, it has been reported that TiO2 72 

nanotube can be in-situ synthesized used as an adhesion support platform for bone 73 

and stem cells.13 Therefore, the aim of this study was to synthesize TiO2 nanotube 74 

arrays on a titanium plate surface and to test the performance of the modified titanium 75 

electrode as a bio-anode in MFCs.   76 

 77 

MATERIALS AND METHODS 78 

Preparation of TiO2 nanotube arrays 79 

A Ti plate (purity, 99.6%, Guangzhou China; thickness 0.5 mm) was cut into 1.0 cm × 80 

2.0 cm pieces. Before modification, the Ti plates were sequentially cleaned in acetone, 81 

ethanol and deionized (DI) water by ultrasonication for 30 min. The TiO2 nanotube 82 

arrays were synthesized on the cleaned Ti plates by anodic oxidation in 5 wt. % NaF 83 

electrolyte (ethylene glycol/H2O = 8:2) following the method described in an earlier 84 

report.13 The procedure of the treatment was summarized in Fig. S1. Briefly, the Ti 85 

plate was electrochemically oxidized in 5 wt. % NaF electrolyte (ethylene glycol/H2O 86 

= 8:2) in a two-electrode setup with another Ti plate (two times bigger than the anode) 87 

as the counter electrode. The voltage was held at 30 V for 6 h and the temperature of 88 

the electrolyte was maintained at 55 °C. After that, the modified Ti plates were 89 

ultrasonically cleaned in deionized (DI) water for 30 s. Finally, the Ti plates were 90 

annealed in a muffle furnace at 450 °C for 2 h to obtain an anatase structure.  91 

Characterization of TiO2 nanotube arrays 92 
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The surface morphology of the anode was characterized using a field emission 93 

scanning electron microscope (FESEM; SU-70, Hitachi, Japan). The surface chemical 94 

composition was measured using X-ray photoelectron spectroscopy (XPS), which was 95 

collected using an EscaLab 250Xi spectrometer with a monochromated Al Kα source 96 

(Thermo, England). Spectra were calibrated on the Ti and O element and analyzed 97 

using XPSPEAK41 software. The static water contact angles of the hybrid 98 

membranes were determined by using a contact angle goniometer (DSA100, Krüss, 99 

Germany).  100 

Electrochemical characterization of TiO2 nanotube arrays 101 

All electrochemical measurements were performed using an electrochemical 102 

workstation (Biologic VSP, Claix, France) in a three-electrode cell. All potentials in 103 

this work are quoted relative to the Ag/AgCl (3.5 M KCl) reference electrode. The 104 

EIS measurements were performed at an open circuit potential, amplitude of 10 mV, 105 

and a frequency range of 100 kHz to 1 Hz in sterile M9 solution. The corrosion 106 

potential was recorded by linear sweep voltammetry (LSV) in sterile M9 solution. 107 

The potential window was −0.8 to 0.2 V and the scan rate was 0.1 mV s
−1

.  108 

Reactor construction 109 

All electrodes were tested in a cylindrical and dual-chamber reactor, as shown in 110 

detail in Fig. S2A. This reactor contained eight anodes with one cathode. The volume 111 

of the anodic chamber was 800 mL and that of the cathodic chamber was 100 mL. For 112 

TiO2 nanotube arrays modification, we used four parallel electrodes that were placed 113 

on opposite sides of the reactor. For other modifications, we used two parallel 114 

electrodes. The compartments were separated by a cation exchange membrane 115 

(CMI-7000, Membranes International, USA), which was immersed in 5% NaCl 116 

solution for 24 h before use. All reactors were cultivated at a stable ambient 117 

temperature (40±2 °C) controlled by a thermotank. The anolyte consisted of 118 

CH3COONa (1 g/L), M9 solution (NH4Cl, 0.1 g/L; NaCl, 0.5 g/L; KH2PO4, 4.4 g/L; 119 

K2HPO4, 3.4 g/L; MgSO4, 0.1 g/L; NaHCO3, 2 g/L) and trace elements.[20] The 120 

anolyte was inoculated with 100 mL fresh anodic effluent (OD600 was about 1) of an 121 

existing acetate-fed MFC reactor in the lab that had been continuously running for 122 
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two years. The catholyte was 20 g/L K3[Fe(CN)6]. The external resistance was 1 Ω 123 

(Fig. S2B) and the current generation data were collected using a data acquisition 124 

instrument (34970A, Agilent, USA). All average current densities were calculated 125 

based on the data from day 4-8. 126 

Characterization of the biofilm 127 

Current data were collected using a data acquisition instrument (34970A, Agilent, 128 

USA). Biofilm CV was performed within −0.8 to 0.2 V at a scan rate of 1 mV s−1 in 129 

fresh anolyte. EIS was measured at an open circuit potential. The frequency ranged 130 

from 1 kHz to 1 mHz and the polarization potential was 10 mV in fresh anolyte. After 131 

acclimation for 20 days, the biofilm samples of two pieces were subjected to the 132 

LIVE/DEAD BacLight bacterial viability test (LIVE/DEAD® BacLight™ Bacterial 133 

Viability Kit, Molecular Probes, USA) and captured using a fluorescence microscope 134 

(DM2500, Leica, Germany). The biofilm samples of another two pieces were 135 

subjected to cell disruption and then used to measure the protein concentration using 136 

the Folin’s phenol reagent methods. 15
 137 

RESULTS AND DISCUSSION 138 

Evaluation of electrode performance 139 

The surface of the Ti substrate (TS) was silvery gray and shiny. After synthesis of the 140 

TiO2 nanotube arrays (TNs), the color of surface became violet and lost its metallic 141 

luster. SEM images (Fig. 1B-F) showed that the surface of the Ti substrate was 142 

densely packed with a wave texture, whereas the TNs was neatly covered with 143 

nanoscale tubes (diameter: 60–90 nm; wall thickness: ~20 nm) which resulted in an 144 

increased surface area of the electrode. In addition, the Ti substrate turned blue only 145 

after heat treatment at 450 °C for 2 h (HT) and its surface structure was similar to that 146 

of TS, indicating that very thin titanium oxide layers were formed (Fig. S3). 147 

High-resolution XPS scans of the Ti and O regions are shown in Fig. 1G. All of the 148 

electrodes exhibited two peaks (Ti4+-1/2p and Ti4+-3/2p) at binding energies of 458.7 149 

and 465.1 eV, respectively, 
16,17

 which indicated that the surface titanium of HT and 150 
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TNs was completely oxidized and formed a layer of titanium oxide. A different peak 151 

of Ti0 at 454.6 eV was observed on TS, which indicated that the surface titanium was 152 

oxidized in air. However, this only occurred to a limited extent on pristine titanium. In 153 

addition, the O1s XPS spectra of TNs and HT also showed a single clear peak of Ti–154 

O=O at 531.3 eV, whereas different peaks at 530.4 (Ti–OH) and 532.8 eV (Ti–O) 155 

were observed on the surface of TS, which may be attributed to the water adsorbed on 156 

the surface.18 157 

The XPS results showed that the surfaces of TNs, HT and TS had a similar 158 

chemical composition. Therefore, the increase in capacitance is consistent with the 159 

increase of the BET surface area.6 Based on electrochemical impedance spectroscopy 160 

(EIS) in a sterile M9 medium (Fig. S4), the surface capacitance of the TNs increased 161 

from 0.043 to 0.462 mF cm
−2

, which means that the effective contact areas with the 162 

water of TNs were at least 10-fold higher than that of TS. In addition, the water 163 

contact angle of the TS was greater than 120° (Fig. S3B). After anodic oxidation, the 164 

water droplet promptly integrated into the TNs electrode, indicating that the 165 

hydrophobic metal surface was transformed into a hydrophilic surface in the TiO2 166 

nanotube arrays.  167 

Current generation and biofilm characterization  168 

The power output performance of TNs was tested in a cylindrical and dual-chamber 169 

reactor. Fig. 2A and S5 shows the current generation over time for the TNs, HT and 170 

TS. After 4 days of operation, the maximum projected current density (jprojected) of TNs 171 

was 12.7 ± 0.7 A m−2 (mean ± SD, n=3), which was more than 190-fold higher than 172 

that of TS (0.07 ± 0.02 A m−2, n=2). In addition, HT only showed a small increase in 173 

current output (0.16 ± 0.03 A m−2, n=2), indicating the contribution of heat treatment 174 

to the enhancement of current output was very limited.  175 

Cyclic voltammetry of the biofilm was conducted in the same medium to 176 

investigate the electrochemical activity (Fig. 2B). Compared with the electrode CVs 177 

in bare M9 medium (Fig. S6), the biofilm CVs of the TNs exhibited a classic 178 
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sigmoidal shape under acetate turnover conditions, indicating that the generation of 179 

the current could be attributed to biofilm-associated extracellular electrons.6  180 

Biofilms were visualized using fluorescence microscopy (Fig. 2C). The image 181 

showed that the live bacteria biofilms covered 100% of the surface of the TNs, while 182 

almost no biofilm was attached to the surface of TS and HT. Similarly, the protein 183 

concentration (583 ± 55 µg cm−2) on TNs was approximately 15 times higher than 184 

that of the TS (38 ± 12 µg cm−2) (Fig. S7). Next, we performed EIS at an open circuit 185 

potential of the biofilm (~−460 mV) to measure the charge transfer process between 186 

the anode and the biofilm. As shown in Fig. 2D, the charge transfer resistance (Rct) of 187 

TNs was ~580 Ω, compared with ~14,800 Ω for HT and ~28,600 Ω for TS. This 188 

improvement in resistance may be caused by the high conductive contact area 189 

between biofilm and TNs.
19

 In summary, these results indicated that the TiO2 190 

nanotubes were suitable for biofilm formation. 191 

Comparison with other high-performance anode materials 192 

Prior reports of MFCs with titanium plate anodes have shown an extremely low 193 

current output (range from 0 to 0.0006 A m−2; see Table 1).4,12 The maximum current 194 

density achieved in this study is much higher than these previous reports. It is 195 

somewhat complex to compare the current densities among different researches 196 

because the reactor designs, medium compositions, microbial inoculum, and 197 

operational conditions are different in different research groups. However, 198 

most-commonly used graphite plate (6.0 ± 0.6 A m−2, n=2) and graphite felt (11.3 ± 199 

0.4 A m-2, n=2) were also tested under the same conditions in this study (Fig. S8), and 200 

the maximum current densities achieved on them were all lower than that of TNs (p< 201 

0.05), indicating that TNs was indeed a high performance anode material for MFCs.  202 

Furthermore, the current output of TNs is also higher than that produced by other 203 

metal electrodes, such as copper, nickel, silver and gold plate electrodes. Gold and 204 

silver don’t require a detailed analysis of the performance because those noble metals 205 

are cost-prohibitive in practical applications. Copper and stainless steel (SS) are 206 
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commercially available on a large scale. However, these metals are susceptible to 207 

corrosion under the influence of certain ions, such as chloride from M9 solution.,4 208 

When exposed to M9, the corrosion potential of these metals became more negative 209 

(copper: −0.26 V, stainless steel: −0.55 V) (Fig. S9). This propensity to corrosion 210 

would inhibit their development as bio-anodes. By comparison, titanium has the most 211 

positive corrosion potential (−0.08 V in sterile solution; −0.10 V under the presence of 212 

biofilm). 213 

Additionally, table 1 also shows the comparisons of the prices of some high 214 

performance materials. Titanium plate is commercially available at larger scale, and 215 

its price (30 k$ m-3) is similar to graphite felt (25-75 k$ m-3). The lowest material 216 

costs (21 k$ m-3) is SS electrode, while since SS foam (830 – 1600 k$ m-3) and SS felt 217 

(30 – 100 k$ m
-3

) are not widely circulated in the market, the prices of them are much 218 

higher than titanium. In summary, TNs has a high conductivity, corrosion-resistance, 219 

and low price, improving its comparative benefit in real-world applications as a 220 

bio-anode. 221 
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 318 

 319 

Fig. 1 (A–D) Schematic illustration and SEM images for the Ti substrate after 320 

different treatments: Ti substrate (A, B), heat treatment (A, C) and Ti nanotube (A, D); 321 

(E, F) Partial enlarged detail SEM images for the Ti nanotube; (G) XPS 322 

characterization: Ti region and O region. Blue and orange lines refer to Ti4+-1/2p and 323 

Ti4+-3/2p, respectively. Red and green lines refer to Ti–O=O and Ti–O, respectively.    324 
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  325 

Fig. 2 (A) Current output over time of MFCs with different anodes (the data of 326 

graphite electrodes showed in Fig. S4). (B) Cyclic voltammetry (1 mV/s) response of 327 

the anode in fresh culture. The CVs were obtained starting from the second cycle. (C) 328 

Fluorescence microscopy of the biofilms on different electrodes. The biofilms were 329 

stained using the LIVE/DEAD Bac-Light bacterial viability kit (live bacteria, green). 330 

(D) Electrochemical impedance spectroscopy for the biotic Ti substrate after different 331 

treatment at open circuit potential, an amplitude of 10 mV, and a frequency range of 1 332 

kHz to 1 mHz in fresh culture.  333 

  334 

Page 14 of 15

ACS Paragon Plus Environment

Environmental Science & Technology Letters



15 
 

Table 1 Summary of high-performance metal bio-anodes in MFCs  335 

 336 

Metal electrodes for BESs 

 

j projected
 a 

( A m-2) 

Price b 

(k$ m-3) 

corrosion potential  

(V) c 
Ref 

Carbon black/SS 101 / / 20 

SS foam 82 830-1600 e / 21 

254SMO SS grade 22 / / 22 

Flame oxidation SS felt 19 / / 6 

Heat-treated SS felt 15 30-100 e / 7 

Copper electrode d 15.2 ~ 49 f -0.26 4 

Gold electrode d 11.7 / / 4 

Silver electrode d 11.1 / / 4 

SS electrode (SUS 304)   6.7 ~ 21 f -0.55 4 

3D macroporous on SS fiber felt   6.1 / / 23 

Nickel electrode d 3.8 ~ 135 f -0.21 4 

CNTs-stainless steel mesh 3.6 / / 24 

Surface oxygen-rich titanium ~ 0 / / 12 

Titanium electrode d ~ 0 / / 4 

Titanium plate (TNs) 12.7 ~ 30 g -0.08 * 

Untreated graphite felt 11.3 ~ 25-75 e / * 

 

(a) Projected surface area current density; (b) Prices are given per cubic metres of electrode; (c) The 

corrosion potential was recorded by LSV in sterile M9 solution (Fig. S8); (d) Metal power was formed into 

platelike electrode by extrusion; (e) Values of stainless steel electrode substrate from Ref 25; (f) Values of 

those metal electrode substrate from Ref 4; (g) Values of titanium plate (approximately pure metal) form 

Argus metals (https://www.metalprices.com/) 

* This study  
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