

Subscriber access provided by La Trobe University Library

Letter

Active H2 Harvesting Prevents Methanogenesis in Microbial Electrolysis Cells

Lu Lu, Dianxun Hou, Xin Wang, David Jassby, and Zhiyong Jason Ren

Environ. Sci. Technol. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.estlett.6b00209 • Publication Date (Web): 06 Jul 2016 Downloaded from http://pubs.acs.org on July 8, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Active H ₂ Harvesting Prevents Methanogenesis in Microbial
2	Electrolysis Cells
2	•
J	
Л	Lu Lu [†] Dianxun Hou [†] Xin Wang [‡] David Jasshy [§] Zhiyong Jason Ren [†] *
7	
5	[†] Department of Civil, Environmental, and Architectural Engineering, University of
6	Colorado Boulder, Boulder, CO 80309, USA.
7	[‡] MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin
8	Key Laboratory of Environmental Remediation and Pollution Control, College of
9	Environmental Science and Engineering, Nankai University, Tianjin 300071, China
	e
10	[§] Department of Chemical and Environmental Engineering, University of California,
11	Riverside, United States
12	
13	
14	
15	
16	
17	*Corresponding author Ren E-mail: <u>zhiyong.ren@colorado.edu</u> ; phone: (303)
18	492-4137; fax: (303) 492-7217
19	
20	
21	
23	
24	
25	
26	
27	
28	
29	

30 ABSTRACT

31 Undesired H_2 sinks including methanogenesis are a serious issue faced by microbial 32 electrolysis cells (MECs) for high rate H₂ production. Different from current top 33 down approaches on methanogenesis inhibition that showed limited success, this study found active harvesting can eliminate the source (H_2) from all H_2 consumption 34 35 mechanisms via rapid H₂ extraction using a gas-permeable hydrophobic membrane 36 and vacuum. The active harvesting completely prevented CH₄ production and led to 37 much higher H_2 yields than the control using traditional spontaneous release $(2.62-3.39 \text{ vs. } 0.79 \text{ mol } H_2/\text{mol acetate})$. In addition, existing CH₄ production in the 38 39 control MEC was stopped once switched to active H_2 harvesting. Active harvesting 40 also increased current density by 36%, which increased operation efficiency and facilitated organic removal. Energy quantification shows the process was 41 42 energy-positive, as the produced H₂ energy in active harvesting was $220 \pm 10\%$ than 43 external energy consumption, and high purity of H_2 can be obtained.

44

2

ACS Paragon Plus Environment

47 **INTRODUCTION**

Energy and resource recovery has become the best practice of the wastewater 48 49 treatment industry, and hydrogen gas (H_2) is among the most desired products due to its high energy density, potential for detoxifying water pollutants, and great value to 50 different industries.¹⁻³ Among the technologies that can generate H_2 during 51 52 wastewater treatment, microbial electrolysis cells (MECs) showed superior performance than fermentation or photo-biological processes ^{4, 5}, and it was identified 53 54 by the US Department of Energy (DOE) as a key technology to meet the cost goals of 2-4/gge (gasoline gallon equivalent) H₂ from renewable biomass in nearer term. 55

56 MECs employ exoelectrogenic microbes at the anode to convert biodegradable substrates into electrons, which are then transferred to the cathode to reduce H^+ for H_2 57 evolution under a small voltage of 0.2~1.0 V.⁵ The produced hydrogen energy derives 58 59 from the chemical energy stored in the substrates, so MECs can generate more energy than the external energy input. MECs have been shown with high H_2 yield (up to 11) 60 mole H_2 per mole hexose), high production rate (up to 50 m³ H₂/m³ reactor/day), 61 low-temperature operation, and diverse substrate utilization,^{4, 6, 7} and the technology 62 has been scaled up to cubic meter scale.⁸ 63

However, undesired H₂ sinks such as hydrogenotrophic methanogenesis remain a
serious challenge for all MECs.⁹⁻¹¹ The dominance of hydrogentrophic methanogens
in MECs has been confirmed by our previous research¹⁰⁻¹² and multiple groups using
different substrates in MECs ^{9, 13, 14} and even in microbial fuel cells.¹⁵ For example,
like many previous studies, the first MEC pilot study using real wastewater showed

the production of CH₄ instead of H₂ after a period of operation.⁸ While acetoclastic 69 70 methanogens were generally outcompeted by exoelectrogenic microbes in MECs, hydrogenotrophic methanogenesis can scavenge H_2 at nanomolar level and produce 1 71 mole CH₄ from 4 moles of H₂ (4H₂ + CO₂ = CH₄ + 2H₂O).¹² Many different 72 73 approaches have been used to reduce methanogenesis in MECs, including chemical inhibitors,^{16, 17} exposure to O₂,^{18, 19} reduction of hydraulic retention time,^{18, 20, 21} low 74 pH operation,^{16, 19} temperature control,^{7, 10, 16} carbonate limitation,²⁰ and ultraviolet 75 irradiation ²², but most of them observed limited success and many of them 76 encountered other problems, such as damage of exoelectrogens, high cost, and only 77 78 short-term success. A recent review summarized and discussed in detail the advantages and challenges of these methods.⁴ 79

Furthermore, these strategies only repressed methanogenesis but overlooked other 80 routes of H₂ re-consumption. Exoelectrogens can directly oxidize H₂ as the electron 81 donor, and they can also utilize the acetate produced via homoacetogenesis ($2CO_2$ + 82 $4H_2 \rightarrow CH_3COOH + 2H_2O$). Both routes lead to the re-generation of current and then 83 again H₂ production at the cathode, which is called H₂-recycling.⁹ Although 84 H_2 -recycling between the anode and cathode may not result in significant H_2 loss, it 85 increases the electrode overpotential loss and duration of operation cycle and 86 therefore low H₂ recovery.^{9, 23, 24} Standalone methanogenesis inhibition can boost the 87 growth of homoacetogens and increase the H₂-recycling loss.²⁵ As explained by Lee, 88 et al., for these reasons the rapid separation of the H_2 product from the MEC reactor 89 becomes crucial to minimize H₂ diffusion towards the anode.²³ The development of 90

91 new reactor configuration or harvesting method represents new approaches to reduce
92 H₂ sinks and energy loss in MECs.

93 This study employs a new and different approach for preventing the undesired H_2 sinks in MECs. Rather than doing the top down inhibition, we rapidly harvest H_2 by 94 removing it from the reactor. This approach eliminates the source (H_2) from all 95 96 potential H₂ consumption mechanisms and also increases H₂ production rates. We 97 tested this hypothesis by using a gas-permeable hydrophobic membrane, which allows 98 a timely gas separation from the solution via low pressure vacuum. The methanogenesis inhibition and H₂ recovery in this active harvesting system was 99 100 compared with control MECs using traditional spontaneous gas releases. The H_2 101 yields, current densities, H_2 production rates and energy efficiencies were also 102 examined for both systems.

103

104 MATERIALS AND METHODS

105 **Reactor setup**

Figure S1 (Supporting Information) shows the MEC setup for H_2 production and rapid harvesting. Each traditional cubic MEC has a cylinder chamber (3 cm x 4 cm) with a working volume of 25 mL.¹² Carbon brush anode (D=2 cm, L=2.5 cm) and carbon cloth cathode (effective projected area = 7 cm²) coated with 0.5 mg/cm² Pt catalyst were mounted on different ends of the MEC. Hydrophobic PTFE membrane (16 cm², 0.22 um pore size, 160-220 µm thickness, Membrane Solutions, LLC.) was covered on the cathode for H₂ separation. An end plate carved with gas collection channels was pressed against the membrane, and a port connected with all channels was joined to a vacuum pump (BT100-1L, Langer Instruments) for gas harvesting into a gas collection bag (Cali-5-Bond, Calibrated Instruments Inc.) after passing through a desiccator. Nylon mesh was used as the support layer to prevent membrane deformation. The whole reactor was tightly sealed using epoxy. Gas was also passively collected by its spontaneous release to a glass tube (15 mL), which was mounted above the cathode and connected with another gas bag (bag 1).

120

121 **MEC operation**

122 Two acetate-fed MFC anodes with almost identical performance (Figure S2) were 123 selected and transferred to two MECs (MEC1 and MEC2). During the first 47 batch 124 cycles (36–39 days), MEC1 was operated in active H_2 harvesting mode (vacuum) and 125 MEC2 was in passive harvesting mode (spontaneous release). Then their harvesting 126 modes were switched and operated for another 13 batch cycles (12 days). To further 127 evaluate the repeatability and efficacy of active H_2 harvesting, two additional MECs 128 were operated in parallel with spontaneous gas release till they showed same level of 129 methanogenesis. After that, one reactor (MEC3) was converted to active H_2 130 harvesting mode and the other reactor (MEC4) kept the same H_2 releasing protocol. 131 Their performances were compared side-by-side. All MECs were fed with 1 g/L 132 sodium acetate in 50 mM phosphate buffer solution, and were operated under an 133 applied voltage of 0.6 V and the temperature of 25 ± 1 °C.

134

135 Analyses and calculations

Gas, current and chemical analyses are provided in the Supporting Information. Theenergy content of the gas was calculated as:

138
$$W_{\text{gas}}(\mathbf{J}) = n_{\text{H}_2} \Delta H_{\text{H}_2} + n_{\text{CH}_4} \Delta H_{\text{CH}_4}$$
(1)

Where $n_{\rm H_2}$ and $n_{\rm CH_4}$ are the moles of H₂ and CH₄, respectively. $\Delta H_{\rm H_2}$ (285,830 J/mol) and $\Delta H_{\rm CH_4}$ (891,000 J/mol) are the energy content of H₂ and CH₄, respectively.²⁶ System energy consumption by the MEC from the power source and vacuum pump was calculated using^{2, 26}

143
$$W(J) = \sum_{1}^{n} (IE_{ap}\Delta t_{(s)} - I^{2}R_{ex}\Delta t_{(s)}) + Q\gamma Et_{(h)} 3600$$
(2)

Where *I* is the current (A), E_{ap} is the applied voltage (0.6 V), $\Delta t_{(s)}$ is the data sampling increment (600 s), $R_{ex} = 10 \Omega$, *Q* (m³/s) is the maximum H₂ flow rate through membrane, γ is 0.8016 N/ m³ for H₂, *E* is the maximum head loss of 10.34 m (1 atm) due to transmembrane pressure (TMP), and $t_{(h)}$ (hour) is the reaction time of one batch cycle. The energy efficiency $\eta_{E_{c}}$ (%) is the ratio of the energy content in the gas to the energy consumption of system:

150
$$\eta = \frac{W_{\text{gas}}}{W} \tag{3}$$

151

152 **RESULTS AND DISCUSSION**

153 Rapid H₂ harvesting prevented methanogenesis in the MEC

MEC1 was firstly operated for 47 batch cycles (36 days) under active H_2 harvesting condition, in which vacuum was applied to extract H_2 through a gas-permeable

156	hydrophobic membrane (Figure S1, Figure 1). No CH ₄ was detected during this whole
157	period, and stable H_2 was produced. High H_2 yields of 2.62–3.39 mol H_2 /mol acetate
158	or H_2 recoveries of 66–85% were obtained during this operation ⁴ (Figure 1). In
159	contrast, CH ₄ started to accumulate after 12 days in MEC2, which was operated under
160	traditional condition where gas was spontaneously released into the headspace. In the
161	meantime, H_2 yield decreased from 2.82 mol H_2 /mol acetate (14 th batch cycle) to 0.79
162	mol H ₂ /mol acetate (47 th batch cycle). Although H ₂ has a low solubility (0.0016 g
163	H_2/kg water at 293 K), ²⁷ its uptake by methanogens on the anode will create a
164	concentration gradient to facilitate diffusion of H_2 towards the anode, especially under
165	low H_2 production rate. If we assume that no H_2 was consumed by methanogenesis,
166	the total H_2 yield during the first 47 batch cycles is calculated to be 2.52–3.40 mol
167	H ₂ /mol acetate by using a conversion factor of 4 mol H ₂ /mol CH ₄ . This range is
168	exactly the same as the H_2 yield obtained in MEC1, indicating no methanogenesis
169	occurred in MEC1.

To further prove that the methanogenesis inhibition was due to rapid H₂ 170 harvesting, we reversed H₂ harvesting methods for the two MECs after 47th batch 171 cycles. Methanogenesis occurred rapidly in MEC1 when the vacuum was removed, 172 173 and H₂ yield dropped from 2.77 to 1.43 mol H₂/mol acetate after another 13 batch cycles (12 days) (Figure 1). Meanwhile, around half of the H₂ were converted to CH₄. 174 On the contrary, CH₄ production in MEC2 stopped only after another 2 batch cycles 175 176 when vacuum was applied to actively extract H₂. H₂ yield rapidly recovered from 0.79 177 to a maximum of 2.94 mol H₂/mol acetate. In addition, the total yield in both reactors

178	kept stable, suggesting no other losses were unaccounted for. These findings were
179	further supported by the side-by-side comparison of parallel reactors MEC3 and
180	MEC4. Figure S3 shows that initially both reactors showed similar levels of
181	methanogenesis during passive harvesting, but dramatic difference was observed
182	when MEC3 was switched to active harvesting. While a similar level of CH_4 was
183	maintained in the MEC4 control with passive H_2 release, CH_4 production was
184	effectively inhibited after MEC3 was switched to active H_2 harvesting for 2 batch
185	cycles (Figure S3). All these results support the hypothesis that rapid harvesting of H_2
186	can completely inhibit CH ₄ production in MEC. Rather than the direct suppression of
187	methanogenesis, this source deprivation strategy proved to be very effective.

188

189 Rapid H₂ harvesting facilitated current production and H₂ rate

190 The volumetric current density in MECs has shown a strong positive correlation with H₂ production rate.² This is very important because higher rate can significantly 191 192 reduce capital costs. For example, the capital cost of MEC is calculated more than 30 times than a conventional electrolyzer due to MEC's low H₂ rate, although both 193 technologies use similar electrode materials and configurations.^{28, 29} It is interesting 194 195 that higher current density was obtained during active H_2 harvesting than spontaneous gas collection. The average current density decreased from 177 ± 9 to 157 ± 6 A/m³ in 196 MEC1 when the H₂ harvesting switched from active extraction to passive collection 197 (Figure 2A). In MEC2 where H₂ was passively harvested, the current density 198 decreased from 191 to 125 A/m³ on day 39. However, when switch to active 199

200	harvesting current density increased rapidly by 36% to an average of $170 \pm 3 \text{ A/m}^3$. It
201	is believed that active harvesting reduced fine H_2 bubble entrapment on the cathode,
202	which has been found in most high surface area cathodes under spontaneous H_2
203	release condition. ^{30,31} This equivalently increased the effective electrode surface area.
204	Moreover, higher current represents faster substrate degradation and therefore more
205	efficient wastewater treatment. In this case, active H_2 extraction reduced duration of
206	47 batch cycles from 39 to 36 days compared with passive H_2 release, and high COD
207	removal (> 90%) was consistently achieved in each cycle. Such increased efficiency
208	will also reduce the energy input and operation costs. The average H_2 production rate
209	was $1.58 \pm 0.15 \text{ m}^3/\text{m}^3/\text{d}$ for MEC1 and MEC2 under active H ₂ harvesting, which was
210	216% higher than that of 0.5 \pm 0.26 m ³ /m ³ /d in passive H ₂ release (Figure 2B). Even
211	more, it can be seen the H_2 rate can be very stable in active harvesting, which is
212	desired for scaled applications. This positive effect of active H ₂ harvesting on current
213	production was also confirmed in further replicate experiments (MEC3 and MEC4)
214	(Figure S3).

215

216 Active H₂ harvesting consumed low energy

Many MEC studies demonstrated the potential of energy-positive operations, which means the energy value of the produced H_2 is higher than the energy input supplied by the external power source. The extra energy comes from the chemical energy embedded in the substrates. In this study, additional energy is consumed by the vacuum, so it is important to understand the updated energy balance. Based on the

222	aforementioned calculations, the energy efficiency was defined as the ratio of
223	produced energy to the energy input. The energy efficiency ranged from 168% to 250%
224	with an average of 215 \pm 15% for both reactors (Figure 2C). During active $\rm H_2$
225	harvesting in MEC1, the energy efficiency was 220 \pm 10% with H_2 as the only
226	product. This indicates that active H_2 harvesting operation can still be energy-positive
227	and in fact may generate twice amount of the energy than the energy consumed. Due
228	to the low transmembrane pressure (TMP) needed (a maximum of 1 atm) and low
229	molecular weight of gas compared to liquid filtration using hydrophilic membranes,
230	the energy consumed by vacuum of H_2 is only $2-3 \times 10^{-4}$ J for each batch cycle, which
231	is orders of magnitude lower than electrical energy input to MEC for H_2 production
232	(100–150 J) and energy content of produced H_2 (around 300 J) (Figure S4).

233

234 Outlook

235 The new approach of H₂ harvesting demonstrates good potential to increase H₂ 236 recovery and prevent methanogenesis in MECs, but more work is needed to further 237 understanding and development. No obvious membrane fouling was observed during 238 51 days of operation attribute to the hydrophobic feature of membrane that only 239 allows gas to permeate with low TMP. This feature leads to reduced biofilm growth 240 and foulant accumulation on membrane surface compared to hydrophilic membranes 241 targeting effluent quality. However, long term performance does need to be monitored 242 to understand the fouling behavior and methanogenesis prevention. Another aspect 243 needs further study is the purity of H₂. No CO₂ was detected in this study during

244 active gas harvesting due to its absorption by alkaline desiccant. Other biogas such as 245 H_2S could be produced when real wastewater is used, which is a common possibility 246 for any bio-H₂ technology. However, existing gas purification system used in 247 separation industry should be applicable in this system for H_2 purification. While this 248 study demonstrates the proof-of-concept using acetate substrate, further studies are 249 needed to characterize and optimize system's performance using real wastewater. 250 Wastewater contains mixed organic substrates that lead to different reactions 251 involving complex microbial communities, therefore the quantity and quality of gas 252 production can vary significantly. In addition, biofouling and scaling can become 253 significant due to excessive growth of microorganisms and pH and conductivity 254 change. These conditions need to be investigated to optimize operations such as 255 hydraulic retention time (HRT), temperature and vacuum pressure. Further 256 development on membrane that is selective for gas separation is also needed. Because 257 active harvesting doesn't kill methanogens, temporary shutdown of vacuum will lead 258 to recovery of CH₄ production, therefore this method can be used in conjunction with 259 other methanogenesis inhibition measures.

260

261 Acknowledgements

262 This work was supported by the US National Science Foundation under Award263 CEBT-1510682.

264 Supporting Information Available

Additional tables and figures are included in the Supporting Information. This

12

information is available free of charge via the Internet at <u>http://pubs.acs.org/</u>.

Figure 1. H₂ yield and CH₄ yield (represented by an equivalent H₂ yield) in MECs
during different stages of gas harvesting (active vacuum extraction or spontaneous
release). The CH₄ yield (mol CH₄/mol acetate) was converted to an equivalent H₂
yield (mol H₂/mol acetate) using a conversion factor of 4 mol H₂/mol CH₄. The "total"
yield is a sum of equivalent H₂ yield from H₂ and CH₄.

- 280
- 281
- 282

Figure 2. (A) Current density and (B) H_2 production rate normalized to reactor working volume of 25 mL, and (C) energy efficiency in the two MECs during different stages of gas harvesting (active extraction or spontaneous release).

ACS Paragon Plus Environment

291	REFERENCES
292 293	1 Lee, HS.; Vermaas, W. F. J.; Rittmann, B. E. Biological hydrogen production: prospects and
294	challenges. Trends Biotechnol. 2010 , 28 (5), 262-271.
295	2 Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V. M.; Sleutels, T. H. J. A.; Jeremiasse, A. W.; Rozendal, R.
296	A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ.
297	Sci. Technol. 2008 , 42 (23), 8630-8640.
298	3 Luo, H.; Jenkins, P. E.; Ren, Z. Concurrent desalination and hydrogen generation using microbial
299	electrolysis and desalination cells. Environ. Sci. Technol. 2010, 45 (1), 340-344.
300	4 Lu, L.; Ren, Z. J. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour.
301	Technol. 2016 , 215, 254–264.
302	5 Ren, Z.; Ward, TW.; Logan, BE.; and Regan, JM. Characterization of the cellulolytic and
303	hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol. 2007, 103(6),
304	2258-2266.
305	6 Jeremiasse, A. W.; Hamelers, H. V.; Saakes, M.; Buisman, C. J. Ni foam cathode enables high
306	volumetric H_2 production in a microbial electrolysis cell. Int. J. Hydrogen Energy 2010, 35 (23),
307	12716-12723.
308	7 Lu, L.; Xing, D.; Ren, N.; Logan, B. E. Syntrophic interactions drive the hydrogen production from
309	glucose at low temperature in microbial electrolysis cells. Bioresour. Technol. 2012, 124, 68-76.
310	8 Cusick, R. D.; Bryan, B.; Parker, D. S.; Merrill, M. D.; Mehanna, M.; Kiely, P. D.; Liu, G. L.; Logan, B. E.
311	Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl.
312	Microbiol. Biotechnol. 2011 , 89 (6), 2053-2063.
313	9 Lee, H. S.; Torres, C. I.; Parameswaran, P.; Rittmann, B. E. Fate of H_2 in an upflow single-chamber
314	microbial electrolysis cell using a metal-catalyst-free cathode. Environ. Sci. Technol. 2009, 43 (20),
315	7971-7976.
316	10 Lu, L.; Ren, N.; Zhao, X.; Wang, H.; Wu, D.; Xing, D. Hydrogen production, methanogen inhibition
317	and microbial community structures in psychrophilic single-chamber microbial electrolysis cells.
318	Energy Environ. Sci. 2011 , 4 (4), 1329-1336.
319	11 Lu, L.; Xing, D.; Ren, N. Pyrosequencing reveals highly diverse microbial communities in microbial
320	electrolysis cells involved in enhanced H ₂ production from waste activated sludge. Water Res. 2012,
321	46 (7), 2425-2434.
322	12 Lu, L.; Xing, D.; Ren, N. Bioreactor performance and quantitative analysis of methanogenic and
323	bacterial community dynamics in microbial electrolysis cells during large temperature fluctuations.
324	Environ. Sci. Technol. 2012 , 46 (12), 6874-6881.
325	13 Siegert, M.; Yates, M. D.; Spormann, A. M.; Logan, B. E. Methanobacterium dominates biocathodic
326	archaeal communities in methanogenic microbial electrolysis cells. ACS Sustainable Chem. Eng.
327	2015 , <i>3</i> (7), 1668-1676.
328	14 Siegert, M.; Li, XF.; Yates, M. D.; Logan, B. E. The presence of hydrogenotrophic methanogens in
329	the inoculum improves methane gas production in microbial electrolysis cells. Front. Microbiol.
330	2014 , <i>5</i> , 798.
331	15 Shehab, N.; Li, D.; Amy, G. L.; Logan, B. E.; Saikaly, P. E. Characterization of bacterial and archaeal
332	communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl. Microbiol.
333	Biotechnol. 2013 , <i>97</i> (22), 9885-9895.
334	16 Chae, K. J.; Choi, M. J.; Kim, K. Y.; Ajayi, F. F.; Chang, I. S.; Kim, I. S. Selective inhibition of

335 methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int. J. 336 Hydrogen Energy 2010, 35 (24), 13379-13386. 337 17 Catal, T.; Lesnik, K. L.; Liu, H. Suppression of methanogenesis for hydrogen production in 338 single-chamber microbial electrolysis cells using various antibiotics. Bioresour. Technol. 2015, 187, 339 77-83. 340 18 Call, D.; Logan, B. E. Hydrogen production in a single chamber microbial electrolysis cell lacking a 341 membrane. Environ. Sci. Technol. 2008, 42 (9), 3401-3406. 342 19 Hu, H. Q.; Fan, Y. Z.; Liu, H. Hydrogen production using single-chamber membrane-free microbial 343 electrolysis cells. Water Res. 2008, 42 (15), 4172-4178. 344 20 Clauwaert, P.; Verstraete, W. Methanogenesis in membraneless microbial electrolysis cells. Appl. 345 Microbiol. Biotechnol. 2009, 82 (5), 829-836. 346 21 Wang, A.; Liu, W.; Cheng, S.; Xing, D.; Zhou, J.; Logan, B. E. Source of methane and methods to 347 control its formation in single chamber microbial electrolysis cells. Int. J. Hydrogen Energy 2009, 34 348 (9), 3653-3658. 349 22 Hou, Y.; Luo, H.; Liu, G.; Zhang, R.; Li, J.; Fu, S. Improved hydrogen production in the microbial 350 electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation. Environ. Sci. Technol. 351 2014, 48 (17), 10482-10488. 352 23 Lee, H. S.; Rittmann, B. E. Significance of biological hydrogen oxidation in a continuous 353 single-chamber microbial electrolysis cell. Environ. Sci. Technol. 2010, 44 (3), 948-954. 354 24 Parameswaran, P.; Torres, C. I.; Lee, H. S.; Rittmann, B. E.; Krajmalnik-Brown, R. Hydrogen 355 consumption in microbial electrochemical systems (MXCs): The role of homo-acetogenic bacteria. 356 Bioresour. Technol. 2011, 102 (1), 263-271. 357 25 Parameswaran, P.; Torres, C. I.; Lee, H. S.; Krajmalnik-Brown, R.; Rittmann, B. E. Syntrophic 358 interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron 359 balances. Biotechnol. Bioeng. 2009, 103 (3), 513-523. 360 26 Katuri, K. P.; Werner, C. M.; Jimenez-Sandoval, R. J.; Chen, W.; Jeon, S.; Logan, B. E.; Lai, Z.; Amy, G. 361 L.; Saikaly, P. E. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive 362 hollow-fiber membrane for treatment of low-organic strength solutions. Environ. Sci. Technol. 2014, 363 48 (21), 12833-12841. 364 27 Kaye, G. W. C.; Laby, T. H., Tables of physical and chemical constants. In 15th ed.; Longman, NY, 365 1986; p 219. 366 28 Lu, L.; Huang, Z.; Rau, G. H.; Ren, Z. J. Microbial electrolytic carbon capture for carbon negative and 367 energy positive wastewater treatment. Environ. Sci. Technol. 2015, 49 (13), 8193-8201. 368 29 Rau, G. H.; Carroll, S. A.; Bourcier, W. L.; Singleton, M. J.; Smith, M. M.; Aines, R. D. Direct 369 electrolytic dissolution of silicate minerals for air CO₂ mitigation and carbon-negative H₂ production. 370 Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (25), 10095-10100. 371 30. Lu, L.; Hou, D.; Fang, Y.; Huang, Y.; Ren, ZJ. Nickel based catalysts for highly efficient H2 evolution 372 from wastewater in microbial electrolysis cells. Electrochimica Acta 2016, 206, 381-387. 373 31. Zhang, Y.; Merrill, M. D.; Logan, B. E. The use and optimization of stainless steel mesh cathodes in 374 microbial electrolysis cells. Int. J. Hydrogen Energy 2010, 35 (21), 12020-12028. 375 376

16