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Abstract 10 

Growing interest in anaerobic treatment of domestic wastewater requires a parallel focus on 11 

developing downstream technologies that address nitrogen pollution, especially for treatment 12 

systems located in eutrophication-impacted watersheds. Anaerobic effluents contain sulfide and 13 

hydrogen sulfide (a corrosive gas), dissolved methane (a potent greenhouse gas), ammonium and 14 

residual organic carbon predominantly in the form of volatile fatty acids. Conventional 15 

approaches to nitrogen removal are energy- and chemical-intensive, and are not appropriate for 16 

nitrogen removal from anaerobic effluents. Innovative, energy efficient nitrogen removal 17 

processes are developing and involve several novel chemotrophic processes.  This review 18 

provides information on these processes, identifies how to control and retain the most desirable 19 

microorganisms, and considers the impact of reactor configuration on performance.  Given the 20 

complexity of the technologies under development that remove nitrogen from anaerobically-21 

treated domestic wastewater, we conclude that computational models can support their 22 

development, and that sensor-mediated controls are essential to achieving energy efficiency.  23 

1. Introduction 24 

The domestic wastewater treatment industry in the United States is in a period of major change 25 

motivated by two movements that are inspiring technological innovation in the industry: a need 26 

to renew infrastructure that was built in response to the 1972 Clean Water Act and is reaching 27 

the end of its design life, and a drive toward more sustainable practices including energy 28 

recovery and efficiency.  At the same time, increasingly stringent effluent nutrient guidelines are 29 

being implemented across the highly populated coastal margins of the United States
1-3

, fueled 30 

mostly by a need to mitigate eutrophication by managing nitrogen and phosphorus. Nutrient 31 

recovery technologies applied to domestic wastewater exist
4
 or are under development

5-7
.  While 32 
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desirable from a sustainability perspective, nutrient recovery is typically not practical for 33 

treatment plants located far from agricultural land or where direct water reuse is not practiced 34 

because conveying liquid nutrients is economically infeasible
8
.   35 

Although both nitrogen and phosphorus management are important, this review focuses on 36 

mainstream biological nitrogen removal, which has been identified as a priority for innovation 37 

and development by the water industry.  This prioritization has been motivated by performance, 38 

energy and space inefficiencies associated with existing nitrogen removing technologies that 39 

evolved as “add ons” to conventional activated sludge processes.   Within these traditional 40 

systems, multiple microbial groups coexist across a range of redox environments to achieve 41 

carbon and nitrogen conversions that are not optimized for any one group. Motivated by the 42 

desire to develop cost-effective and energy-efficient technologies that achieve net energy neutral 43 

(or positive) domestic wastewater treatment, the water industry has prioritized the need to 44 

develop a new generation of mainstream (as opposed to sidestream) nitrogen removing 45 

technologies that are suitable for treating effluents from anaerobic systems receiving domestic 46 

wastewater. 47 

Anaerobic treatment of domestic wastewater is gaining attention for enhancing energy recovery 48 

from wastewater
9, 10

 because it: eliminates aeration, produces methane, and reduces sludge 49 

handling requirements
10

. Several demonstrations have met USEPA’s secondary effluent 50 

standards
11-14

 even at temperatures as low as 6°C
15

; however, anaerobic processes produce 51 

effluents with high ammonia-nitrogen, organic-nitrogen and dissolved methane concentrations 52 

which constrain wide-scale adoption of domestic anaerobic wastewater treatment
16

.  Advancing 53 

anaerobic treatment of domestic wastewater in nutrient-sensitive regions where total nitrogen 54 

removal regulations exist or are anticipated requires implementing novel, energy efficient 55 
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mainstream nitrogen removal technologies that avoid nullifying energy savings realized from the 56 

anaerobic process, while also mitigating greenhouse gas emissions, maintaining or reducing the 57 

footprint, and reducing sludge handling requirements. 58 

This review synthesizes past studies of biological nitrogen removal from anaerobic effluents
17-23

 59 

and rapidly developing energy efficient approaches for nitrogen removal that have not been 60 

included in previous reviews
24, 25

. We review microbial metabolic processes that are likely to be 61 

active in nitrogen removing treatment systems receiving anaerobic effluents, and emphasize that 62 

computational process modeling can help us understand how these complex metabolisms are 63 

likely to behave under various treatment approaches. We consider tradeoffs that exist between 64 

reducing energy demand, greenhouse gas emissions, space requirements and effluent nitrogen 65 

concentration, all of which are strongly influenced by reactor configuration and operational 66 

control strategy.  Throughout the review, we highlight key areas where innovative research is 67 

needed to develop solutions that meet increasingly stringent nitrogen regulations and move the 68 

wastewater industry toward net energy neutral (or positive) treatment.  69 

2. Anaerobic effluent composition 70 

Direct anaerobic treatment of domestic wastewater generates an effluent (Table 1) with a 71 

significantly different composition than that of conventional aeration-based treatment. For 72 

example, ammonium and phosphate concentrations increase during anaerobic treatment due to 73 

ammonification and biotic
24

 or abiotic
24, 25

 phosphate release. In contrast, conventional aerobic 74 

treatment decreases ammonium and phosphate concentrations due to nitrification and uptake for 75 

biomass growth. Sulfate concentrations in domestic wastewater vary considerably, depending 76 

upon factors such as industrial wastewater discharges, coagulant used for drinking water 77 

treatment, and drinking water sources. During anaerobic treatment, sulfate is reduced by sulfate 78 
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reducing microorganisms to sulfide and hydrogen sulfide gas, undesirable products that are 79 

corrosive, malodorous with an odor threshold of 0.04 ppmv, dangerous to human health at 80 

concentrations above 100 ppmv
26

, and inhibitory to nitrification
21

 and methanogenesis
27, 28

. 81 

Anaerobic treatment converts the organic carbon in domestic wastewater to gaseous products 82 

(carbon dioxide and methane) and dissolved products (organic acids
29, 30

 and methane
11, 31

).  The 83 

concentration of dissolved methane in anaerobic effluents varies seasonally and increases when 84 

temperature decreases. While the average measured effluent concentration of dissolved methane 85 

is approximately 1.1 times saturation (Table 1), this value is highly variable and values as high as 86 

4.1 times saturation
15, 32

 have been reported. Methane is a potent greenhouse gas and its release 87 

represents a significant potential environmental impact
16

 that should be prevented.  At present, 88 

technologies to recover dissolved methane either produce biogas with low methane content or 89 

recover insufficient methane to offset their energy demands
33-36

.  Considering the undesirable 90 

impacts of sulfide and dissolved methane in anaerobic effluents, it makes sense to consider the 91 

efficacy of using either or both as novel electron donors for nitrogen removal when stringent 92 

nitrogen discharge limits apply
19, 37

.   93 

Conventional nitrogen removal systems located in regions that require high levels of total 94 

nitrogen removal tend to be electron donor limited due to use of primary clarifiers and aerobic 95 

loss of organic carbon as CO2. Consequently, many full scale systems require exogenous 96 

electron donor to achieve effluent nitrogen limits.  In contrast, primary clarifiers are not used 97 

when mainstream anaerobic treatment is deployed. Furthermore, the electron donor equivalents 98 

typically present in anaerobic effluents are preserved in solution as organic COD not removed 99 

during anaerobic treatment, dissolved methane and sulfide, and far exceed what is necessary to 100 

achieve nitrogen removal via nitrite or nitrate (Table 1). This assumes these electron donors have 101 
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not been aerobically oxidized and are available for denitrification, a challenge that can be 102 

addressed through reactor configuration design (highlighted in Section 5). The COD balance also 103 

indicates that the electron donors will compete for nitrite or nitrate, and underscores the 104 

importance of applying reactor flow models, reaction rate kinetics and stoichiometry to ascertain 105 

which competing metabolic groups will thrive during nitrogen removal from anaerobic effluents.   106 

Table 1: Summary of effluent characteristics reported in studies of anaerobic domestic 107 

wastewater treatment, and electron donor requirements (expressed as COD equivalents) for 108 

complete denitrification from nitrate to N2.  109 

 Average                     

± Standard Deviation 
Range Referencesa 

Ammonium (mg N/L) 36±17 9-67 
4, 17, 22, 23, 38-46

 

Phosphate (mg P/L) 6±7 1-20 
4, 22, 38, 40, 41, 44, 45

 

Sulfide (mg COD/L) 62±83 3-184 
4, 17, 34, 40, 41, 44, 47

 

Methane (mg COD/L) 91±50 42-204 
31, 33-35, 40, 41, 46, 48

 

Soluble
b
 COD (mg COD/L) 

99±46 46-201 
17, 23, 31, 34, 35, 38, 40-

43, 45, 46
 

Total electron donor available
c
 

(mg COD/L) 
252±107   

Electron donor consumed for 

denitrification via nitrate
d
  

(mg COD/L)  
135±47   

Electron donor required for 

denitrification via nitrite
d
  

(mg COD/L) 

98±32   

 
a
 Only studies that treated real domestic wastewater were used to generate this table. 

b
Soluble COD definition determined by the pore size of filters used: 0.45 μm

17, 35, 43, 45
, 0.7 μm

38
, Unreported

23, 31, 34, 

40-42, 46 
c
The theoretical oxygen demand from ammonium is not considered in this calculation. Total electron donor is 

calculated as the sum of soluble COD, dissolved methane as COD, and sulfide as COD. Methane does not react in 

the COD test
34

, and it was assumed that sulfide is oxidized or stripped in the filtration/sample acidification process 

prior to COD measurement. 
d
 The electron donor consumed incorporated demands for both respiration and cell growth, and considers loss of 

ammonium to support cell growth. Yields were assumed for nitrifiers (0.1 g CODx/g N, Table 3), for heterotrophic 

denitrifiers applied only to the soluble COD fraction (0.39 g CODx/g COD
49

). Growth of other organisms was 

assumed to be insignificant.  
 110 

3. Metabolic Pathways for Biological Nitrogen Removal from Anaerobic Effluents 111 

A number of metabolic processes directly achieve or support nitrogen removal (Table 2) and 112 

deserve consideration, although some produce environmentally undesirable byproducts like 113 
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nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide over 100 years
50

 114 

(discussed further in Sections 3.2 and 4).  Kinetic and stoichiometric parameters for many of the 115 

reactions in Table 2 were compiled from the literature (see Table 3) and can be used with process 116 

modeling to predict the distinct microbial community structures that are likely to form when 117 

attempting nitrogen removal in anaerobic effluents.  The majority of these parameters were 118 

derived across a broad range of growth conditions; therefore, values vary considerably (see Table 119 

S1), making predictions about competition between pathways challenging. Nevertheless, relative 120 

values provide insight into competitive growth conditions that will occur in nitrogen removal 121 

systems treating anaerobic effluents.  When coupled with process flow models, the information 122 

in Table 3 can help assess nitrogen removal treatment technologies under development, and 123 

prioritize research or technology development needs for meeting nitrogen removal treatment 124 

goals.   125 
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Table 2: Potential metabolisms present in a nitrogen removal system when sulfide, methane, 126 

acetate (a volatile fatty acid prominent in anaerobic effluents), and ammonium are present.   127 

 128 

 
a
 The free energy of reaction, which was calculated using

51
, can be used to determine the true 

growth yield for each process52
. 

bNitrate is produced from anammox as a result of anabolic reactions.  

Relevant 

Processes Metabolism Catabolic Stoichiometric Equation 

Free Energy of 

Reaction  

(1 bar, 25°C)a 

N
it

ri
fi

ca
ti

o
n
 

N
it

ri
ta

ti
o
n
 

Ammonium 

Oxidation53  
NH4

++1.5O2→NO2
-+H2O + 2H+ -190 kJ/mol NH4

+ 

 Nitrite Oxidation53 NO2
-  + 0.5O2 → NO3

- -79 kJ/mol NO2
- 

D
en

it
ri

fi
ca

ti
o

n
 

D
en

it
ri

ta
ti

o
n
 

Anaerobic 

Ammonium 

Oxidationb 

(anammox)54 

NH4
+ + NO2

-
 → N2

 + 2H2O  -360 kJ/mol NH4
+ 

Denitrifying 

anaerobic methane 

oxidation (damo) 
55 

3CH4 + 8NO2
- + 8H+→ 4N2 +3CO2 + 10H2O -1050 kJ/mol CH4 

Sulfide-based 

denitritation56  
3HS-+5H+ + 8NO2

- ↔ 3SO4
2-+4N2+4H2O 

-990 kJ/mol HS- 

 

Heterotrophic 

denitritation53  
3CH3COO- + 8NO2

-+11H+ ↔ 4N2+ 6CO2+10H2O 

-1100 kJ/mol 

CH3CHOO- 

D
en

it
ra

ta
ti

o
n
 

damo57 5CH4+ 8NO3
- + 8H+→ 4N2 +5CO2 + 14H2O -830 kJ/mol CH4 

Sulfide-based 

denitrification56   
5HS-+3H+ + 8NO3

- ↔ 5SO4
2-+4 N2+4H2O 

-770 kJ/mol HS- 

Heterotrophic 

denitrification53  
5CH3COO- + 8NO3

-+13H+ ↔ 4N2+ 10CO2+14H2O -910 kJ/mol CH3CHOO- 

A
er

o
b

ic
 

p
ro

ce
ss

es
 Methane 

oxidation58 
CH4

  + 2O2 → CO2
 + 2H2O -820 kJ/mol CH4 

Sulfide oxidation59 HS-+ 2 O2 ↔ SO4
2-+ H+ -760 kJ/mol HS- 

Heterotrophic 

oxidation60 
CH3COO-+ 2O2+ H+ ↔ 2CO2+2H2O -890 kJ/mol CH3CHOO- 

 Sulfate reduction61 CH3COO- + SO4
2-+ 2H+ ↔ HS-+ 2CO2+2H2O -140 kJ/mol CH3CHOO- 
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Table 3: Median kinetic (maximum specific growth rate, max, half-saturation constants for electron 129 
donor, Kdonor, and acceptor, Kacceptor) and stoichiometric (cell growth yield) parameters for relevant 130 

biological processes. Underlined values were obtained with pure cultures. With the exception of † which 131 
have a temperature range between 20-38° C, all kinetic and stoichiometric parameters were determined 132 

between 17-30° C. For all references and ranges see supplementary information.   133 

 134 

3.1 Competition for oxygen in downstream nitrogen removal systems 135 

The reduced nitrogen in anaerobic effluents has to be oxidized to produce nitrite or nitrate to 136 

achieve anaerobic biological nitrogen removal. Directing nitrification processes through nitrite
75-

137 

77
 (nitritation) as opposed to nitrate (nitratation) is preferable because it reduces aeration demand 138 

by 25% based on stoichiometric estimates. If partial nitritation is desired, where about half of the 139 

ammonium is oxidized to nitrite so that both are present to support anammox, then stringent 140 

control strategies or novel reactor configurations are needed, as discussed in section 4 and 5.  141 

Once oxygen is introduced, however, other competing microbially-mediated aerobic reactions 142 

also occur. For instance, dissolved methane coupled with aeration supports the growth of 143 

methanotrophic bacteria.  Information in Table 3 suggests that aerobic methanotrophs (median 144 

KO2=0.05 mg/L) will out-compete ammonia oxidizing microorganisms (AOM) (median KO2=0.8 145 

mg/L) for oxygen, which has been experimentally corroborated
78, 79

. Although aerobic 146 

Organism 
μmax 

(day-1) 
Observed Yield Kdonor Kacceptor 

Median Median Units Median Donor Units Median Acceptor Units 
Ammonium Oxidizing 

Microorganisms 

(AOM) 
1.1662 0.1263 g CODx/g N 0.764 NH4

+ 
mg N/L 0.849 O2 mg O2/L 

Nitrite Oxidizing 

Bacteria (NOB) 
0.65 0.0849 g CODx/g N 0.9 NO2

- mg N/L 160 O2 mg O2/L 

Methane Oxidizing 

Bacteria 3.065 0.0666 g CODx/g CODs 0.4467 CH4 mg COD/L 0.05 O2 mg O2/L 

Sulfide Oxidizing 

Bacteria 3.25 0.3261 g CODx/g CODs 21 HS- mg S/L 359, 68 O2 mg O2/L 

Nitrite-damo 0.035 0.038 g CODx/g CODs 0.3269 CH4 mg COD/L 0.670 NO2
- mg N/L 

Nitrate-damo† 0.8 0.09 g CODx/g CODs 5.4471 CH4 mg COD/L 0.1172 NO3
- mg N/L 

Anammox† 0.121 0.11 g CODx/g N 0.173 NH4
+ mg N/L 0.27 NO2

- mg N/L 
Sulfide-based 

denitrification 
3.2474 1.4 g CODx/g S 1.1 HS- mg S/L 5.5 NO3

- mg N/L 
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methanotrophy represents an aeration (and, therefore, energy) demand that does not contribute to 147 

nitrogen removal, it also mitigates greenhouse gas emissions by preventing methane stripping.  148 

Sulfide exerts an abiotic oxygen demand because sulfide is rapidly oxidized in the presence of 149 

trace metals
80, 81

 but sulfide oxidizing bacteria are not expected to compete for oxygen with 150 

nitrifiers and methane oxidizing bacteria, based on the values in Table 3. Finally, any residual 151 

VFA will be rapidly oxidized by heterotrophic bacteria under aerobic conditions at a faster rate 152 

than all other biological processes listed in Table 3
49

. 153 

Multiple factors (in addition to aeration) can be used to control the growth competition between 154 

AOM and NOB (see Section 4).  Furthermore, bioreactor design (discussed in Section 5) can 155 

influence which metabolic processes succeed.  Overall, it is clear that there are complex 156 

interactions between a number of aerobic microbial metabolic processes that occur when treating 157 

methane- and sulfide-ladened anaerobic effluents and will contribute to or interfere with the goal 158 

of nitrogen removal. This strengthens the argument for using computational models of new 159 

treatment technology concepts to elucidate likely competitive responses, and the need for good 160 

kinetic and stoichiometric estimates to do so. 161 

3.2 Potential denitrification pathways 162 

Biological nitrogen removal processes use an electron donor to reduce nitrite or nitrate, 163 

preferably to innocuous N2 gas.  Conventional wastewater treatment systems use organic matter 164 

as the electron donor for heterotrophic denitrification to achieve nitrogen removal. Excellent 165 

nitrogen removal (i.e., total nitrogen concentrations below 4 mg N/L) can be achieved when the 166 

influent COD/NH3 ratio is > twelve
49

.  In many instances where conventional treatment 167 

approaches are used, wastewater streams are organic carbon-limited and supplemental organic 168 

matter must be provided at an economic and environmental life cycle cost
82, 83

.  Conversely, 169 
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nitrogen removal from anaerobic effluents can proceed via multiple electron donors that include 170 

dissolved methane, ammonium, and sulfide in addition to residual biodegradable organic matter 171 

that exists mostly as volatile fatty acids (VFAs)
29, 30

. As noted in Table 1, anaerobic effluents 172 

have very high COD/NH3 ratios and, therefore, typically have sufficient electron donor to meet 173 

excellent total nitrogen removal goals. Note, however, that methane and sulfide represent well 174 

more than 50% of the electron donor in these effluents, although full-scale systems have not yet 175 

been designed that use them to achieve mainstream nitrogen removal.  Herein lies an opportunity 176 

for innovative nitrogen removal via one or more of these novel electron donors.  177 

Anammox (ammonium as electron donor) and damo (methane as electron donor) are oxygen-178 

sensitive
84, 85

 anaerobic microbial metabolic processes that can achieve nitrogen removal.  While 179 

our understanding of how to use anammox for denitritation in mainstream applications is 180 

growing
76, 77, 86-89

, damo-based mainstream nitrogen removal is in its infancy
19, 20

.  Nitrite or 181 

nitrate can be used as electron acceptor to oxidize methane (damo) while meeting nitrogen 182 

removal goals and reducing methane emissions.  Nitrous oxide emissions from damo have not 183 

been reported
90

 and, in the case of nitrite-damo, are unlikely to be produced because the 184 

enzymatic denitritation pathway does not involve nitrous oxide
91

.  Similarly, nitrous oxide 185 

emissions are diminished in anammox systems
92, 93

. Nitrite-based damo has a particularly slow 186 

maximum specific growth rate relative to nitrate-based damo and anammox (Table 3), and both 187 

damo and anammox have slow maximum specific growth rates relative to heterotrophic 188 

denitrification, suggesting that long solids residence times (SRTs) are needed to retain the 189 

former.  Between the demand for long SRTs and the dilute biomass concentrations expected in 190 

mainstream damo or anammox applications versus side stream (high strength) applications, 191 
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biofilm treatment process configurations should be used
94

. Indeed, attempts to limit biomass 192 

washout of nitrite-damo with biofilms showed improved nitrite reduction rates
20

.  193 

Both experiments and modeling exercises offer insight into how damo and anammox may 194 

compete in systems treating anaerobic effluents.  Early enrichments of suspended growth co-195 

cultures of anammox and nitrite-dependent damo suggested they would only coexist under 196 

ammonium-limited conditions
95

, which slow anammox growth.  Modeling results support this 197 

finding and show that anammox out-competes damo for nitrite at higher ammonium 198 

concentrations
70

. Other suspended and biofilm enrichment studies found that nitrate- and to a 199 

lesser extent nitrite-dependent damo and anammox coexist
96, 97

.  Nitrate-dependent damo and 200 

anammox can coexist because they do not compete for substrates; furthermore, damo can use the 201 

nitrate produced by anammox
96

.  In an interesting twist, aerobic methanotrophs can support 202 

heterotrophic denitrification by converting dissolved methane into methanol, which can be used 203 

as an electron donor (reviewed by
98

). One study found an aerobic methanotroph that reduced 204 

nitrate to nitrous oxide under low oxygen conditions
99

. Others showed that aerobic 205 

methanotrophs can oxidize ammonium to nitrite
100

 and emit nitrous oxide in the process
101, 102

; 206 

however, it is unclear if this process can successfully compete with AOMs to achieve partial 207 

nitritation of anaerobic effluents.  208 

While the competition between anammox and damo is complex and multifaceted, addition of 209 

sulfide oxidation makes it more so.  Microbial sulfide oxidation via nitrite and nitrate is very 210 

rapid relative to other processes that use these same electron acceptors (reviewed by 
103

). For 211 

example, denitrification rates are faster with sulfide as the electron donor than with methanol
37

. 212 

Additionally, sulfide can be partially oxidized to elemental sulfur or sulfite, and both can be used 213 

as an electron donor for denitrification
104, 105

.  In one study of industrial wastewater, 90% total 214 
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nitrogen removal when anammox and sulfide-based denitrification via nitrate (produced by the 215 

anammox process) were coupled
106

. Interestingly, sulfide inhibits AOM and NOB at 216 

concentrations around 3 and 1 mg S/L
107

, respectively; therefore, differential sulfide-driven 217 

inhibition of NOB over AOM could be a strategy for achieving nitritation
108

. Sulfide also inhibits 218 

anammox, but studies are conflicted over how sensitive it is since inhibition half saturation 219 

constants (KI) range from 0.3
109

 to 30
110

 mg S/L.  Finally, sulfide inhibits heterotrophic reduction 220 

of nitrous oxide to nitrogen gas and can lead to increased nitrous oxide emissions
111-113

. In total, 221 

sulfide plays a very complex yet important role during nitrogen removal from anaerobic effluents 222 

and also offers interesting possibilities as a useful electron donor; in turn, it is a high priority for 223 

further study.  224 

4. Aeration Control to Sustain Nitritation 225 

Removing nitrogen from anaerobic effluents using nitrite as the electron acceptor can save 226 

energy by reducing aeration, but requires a strategy that out-selects (or prevents growth of) NOB.  227 

Out-selection strategies have been demonstrated for side-stream treatment of anaerobic digester 228 

reject waters and include using elevated temperatures
114, 115

, high free ammonia (FA) 229 

concentrations
116-118

, high free nitrous acid concentrations
117-119

, and high pH
120

.  However, these 230 

strategies are unsuitable for mainstream processes, which have ammonium concentrations up to 231 

50 times lower than anaerobic digesters that treat waste sludge, have large volumes that are 232 

impractical to heat, and are too dilute for FA inhibition.  Therefore, alternative strategies tailored 233 

to mainstream applications are needed. 234 

Given the higher relative median oxygen affinity (lower KO2) of AOM over NOB (Table 3), 235 

dissolved oxygen (DO) control has been used to achieve stable nitritation in sidestream
121

 and 236 
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mainstream
122

 processes. The actual DO used to achieve NOB out-selection is complicated by 237 

the fact that oxygen affinity varies among different genera of NOB
76, 123, 124

. Several mainstream 238 

studies have successfully out-selected NOB at DO concentrations at or greater than 1.5 mg/L
23, 

239 

76, 86, 88, 125
. It has also been shown that NOB exhibit a period of reduced growth rate following 240 

anoxic disturbances
125, 126

 (called transient anoxia), and this phenomenon has been used to 241 

achieve NOB out-selection
76

.  Using transient anoxia to support nitrite-mediated nitrogen 242 

removal from anaerobic effluents requires consideration of the dissolved VFAs, methane and 243 

sulfide present in anaerobic effluents, which can aid in achieving rapid anoxia when they are 244 

biotically or abiotically oxidized via DO.   245 

A key development that has enhanced the application of nitritation in mainstream processes is 246 

sensor-mediated online control systems that are reliable and durable. Newer, more robust sensor 247 

technologies for monitoring ammonia
76, 127

, DO
76, 127

, nitrite
128

 and nitrate
76, 127, 128

 are being used 248 

successfully in full-scale systems and increasingly for nitritation control
76, 129, 130

.  Although 249 

online control for mainstream nitrogen removal from anaerobic effluents is in its infancy with no 250 

published studies to date, it has been shown that sensor-mediated control can help achieve stable, 251 

mainstream anammox downstream of aerobic carbon removal
76

; these experiences can inform 252 

strategies for sensor-mediated online control of nitrogen removal from anaerobic effluents.  An 253 

example of sensor- mediated online control is ammonia-based aeration control where on-line 254 

ammonia sensors are used to control the duration of aeration
86

 or DO setpoint
85

 to achieve NOB 255 

out-selection and ensure partial nitritation where only a fraction of the ammonium is oxidized to 256 

nitrite so that both nitrite (electron acceptor) and ammonium (electron donor) coexist to support 257 

anammox.  In one pilot scale study
76

, the duration of aeration was decreased when the 258 

ammonium to nitrite plus nitrate ratio was less than one. Subsequently, aeration was gradually 259 

Page 14 of 33

ACS Paragon Plus Environment

Environmental Science & Technology Letters



 15 

increased again once a predetermined minimum duration was reached. In essence, this strategy 260 

controlled the aerobic solids residence time (SRT) to only allow ammonium oxidation, and was 261 

combined with transient anoxia to improve NOB out-selection.  The innovative combination of 262 

ammonia-based control of aerobic SRT and transient anoxia should also help achieve NOB out-263 

selection in anaerobic effluents. Another control strategy for nitrite-mediated nitrogen removal in 264 

mainstream applications involves pH-based control
131

.  For example, pH-based control of 265 

feeding and aeration was applied to a lab-scale sequencing batch reactor system modeled after 266 

the DEMON
®
 process

132
 but adapted for mainstream applications

77
. It was deemed successful 267 

because higher total nitrogen removal was achieved and less air was used than a system with 268 

time-based aeration control. Both of these studies of sensor-mediated control were operated at 269 

ambient temperatures (20°C and 25°C); NOB out-selection at lower temperatures is an area of 270 

on-going research
133, 134

. 271 

While transient anoxia may be used to out-select NOB, some studies have found it promotes 272 

nitrous oxide emissions
135

 (reviewed by 
136

). If transient anoxia is to be implemented, frequent 273 

aerobic-anoxic cycling may be needed because it decreases nitrous oxide emissions
137

. There is 274 

limited understanding of how process control can be used to minimize nitrous oxide emissions, 275 

which is confounded by the dynamic nature of nitrous oxide emissions from wastewater 276 

treatment plants
138

. In general, high DO concentrations and one-step systems (one reactor is used 277 

with multiple   redox zones to achieve all biological treatment goals) instead of multi-step 278 

systems (wastewater passes between reactors and the biomass in each is retained and not mixed) 279 

reduce nitrous oxide
139, 140

. These findings suggest that nitrous oxide emissions and energy 280 

consumption to achieve nitrogen removal from anaerobic effluents are inter-related and should 281 

be evaluated simultaneously when reviewing system control strategies.   282 
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 5. Reactor Configurations 283 

Achieving mainstream nitrogen removal from anaerobic effluents offers unique challenges that 284 

demand innovative solutions.  First, because anaerobic effluents contain significant amounts of 285 

dissolved gases that are difficult to recover for beneficial purposes and damaging if stripped, 286 

successful configurations should minimize off-gassing.  Second, innovative, energy efficient, 287 

mainstream nitrogen removal can occur by either one-step (nitritation plus denitritation together) 288 

or two-step (nitritation and denitritation occur separately) processes.  These reactor 289 

configurations utilize multiple complex microbial metabolisms that achieve nitrogen removal, 290 

support NOB out-selection, reduce energy consumption, prevent greenhouse (including nitrous 291 

oxide) and corrosive gas emissions, and reduce space requirements. For treatment plants that use 292 

aerobic treatment to manage organic carbon, the most energy efficient means to achieve 293 

denitrification is by anammox
141

; both one- and two-step technologies are being developed 294 

around this strategy
76, 86, 87, 142

.  However, for systems that treat organic carbon anaerobically, 295 

multiple electron donors capable of denitrification are present and dissolved gases may replace 296 

or supplement ammonia as an electron donor.  297 

5.1   Designing reactor configurations to minimize gaseous stripping  298 

The dissolved gases in anaerobic effluents are prone to off-gassing.  Bubbling air into a reactor 299 

where influent concentrations of dissolved gasses are highest makes a system more vulnerable to 300 

gas stripping
143

, and prevents use of the dissolved gases as electron donors.  Reactor 301 

configurations that avoid use of bubbles or extensive agitation during anaerobic nitrogen removal 302 

are needed and some promising options are discussed in Sections 5.2 and 5.3. Furthermore, 303 

advances in technologies that recover dissolved methane from anaerobic effluents in an energy 304 

efficient manner without diluting the gas with carbon dioxide and hydrogen sulfide are greatly 305 
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needed but, to date, do not exist
33

.  If a less energy intensive method for recovering dissolved 306 

methane is developed, enough electron donor is likely to remain in anaerobic effluents to support 307 

nitrogen removal from domestic wastewater via sulfide and VFA (161 + 95 mg/L COD electron 308 

donor available, well above nitrite or nitrate-based denitrification demand as given in Table 1); 309 

however, gas stripping should still be avoided to prevent loss of hydrogen sulfide.  310 

Consequently, reactor configurations that prevent gas stripping and encourage biological 311 

reactions that consume dissolved gases are needed. 312 

5.2 One-step nitrogen removal systems 313 

We contend that biofilms are preferred for one-step systems designed to achieve anaerobic 314 

nitrogen removal because slow growing and low yielding anammox, damo and anaerobic sulfur 315 

oxidizing microorganisms would be retained more effectively than in suspended culture systems.  316 

Because nitrite is the preferred electron acceptor for energy efficient nitrogen removal, one-step 317 

systems must be configured so that off-gassing of dissolved electron donors is prevented even 318 

though aeration is needed to achieve nitritation. Furthermore, AOM must coexist with anaerobic 319 

nitrogen removing microorganisms in one-step systems; unfortunately, biofilm systems make 320 

NOB out-selection difficult, but not impossible
86, 87, 92

, to achieve. Some biofilm systems are co-321 

diffusional, where the electron donor and electron acceptor diffuse into the biofilm in the same 322 

direction.  In these systems, aeration to support biological nitritation occurs in the bulk liquid and 323 

creates an aerobic outer biofilm layer and anoxic inner layer. To prevent off-gassing of precious 324 

electron donors from the bulk liquid, an anoxic phase is needed at the beginning of the process 325 

where feed is introduced. We suspect that sequencing between anoxic and aerobic conditions 326 

will prevent damo from establishing in co-diffusional one-step systems in lieu of other 327 

denitrifiers and that methane oxidation and stripping may still occur during the nitritation phase. 328 
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Two types of co-diffusional, one-step biofilm technologies that show great promise to achieve 329 

energy efficient nitrogen removal from anaerobic effluents are highlighted: granular sludge 330 

systems
144

 select for dense biofilm aggregates in a sequencing batch reactor that is exposed to 331 

high shear forces and managed with short settling and decant times, and moving bed biofilm 332 

reactors (MBBRs) 
145

 contain an inert carrier that supports biofilm formation. Both technologies 333 

are compact have been successfully applied at full-scale for nitrogen removal from centrate
146, 

334 

147
, and are being evaluated for use in mainstream systems that couple aerobic management of 335 

carbon, nitritation and anammox
86, 142, 148

; therefore their use for nitrogen removal from  336 

anaerobic effluents would be a new application of the technology.  337 

In contrast to granular sludge systems and MBBRs, membrane biofilm reactors (MBfRs) are 338 

one-step biofilm systems that are ideally suited to treat anaerobic effluents.  In these systems, 339 

oxygen diffuses through biofilm-coated hollow fiber membranes and creates a bubbleless aerobic 340 

zone adjacent to the membrane and an anaerobic zone at the biofilm surface. If used with an 341 

anaerobic effluent, the electron donors would diffuse from the anaerobic bulk liquid into the 342 

biofilm across anaerobic then aerobic zones. In contrast, electron acceptors diffuse from the 343 

membrane lumen or are biological formed and then diffuse into the biofilm in the opposite 344 

direction; hence, these systems are counter-diffusional
149

.  The biofilm-coated membrane 345 

provides bubbleless aeration, which prevents gas stripping
150, 151

, and the counter-diffusion 346 

configuration allows for separate control of electron donor mass loading rates and aeration rates 347 

via the membrane lumen.  These systems achieve efficient aeration; one study showed oxygen 348 

transfer efficiencies of 20-35%
152

. With one exception
153

, nitrogen removal from wastewater 349 

using MBfRs has been limited to lab-scale demonstrations of high strength wastewater
92, 154, 155

 350 
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and therefore the technology is still under development; however; it holds great promise as long 351 

as reliable NOB out-selection
149, 156, 157

 can be achieved.   352 

5.3 Two-step nitrogen removal systems  353 

Separating nitritation and denitritation steps offers simpler control, allows for a combination of 354 

suspended and/or biofilm processes to be used, and may be the easiest to deploy by retrofitting 355 

existing infrastructure; however, it requires a larger treatment footprint.  To prevent loss of 356 

dissolved electron donor gases, a denitritation tank can precede the nitritation tank and achieve 357 

nitrogen removal via recycled or internally recirculated nitrite using a configuration that 358 

resembles a Modified Ludzack Ettinger (MLE) system.  Although internal recirculation provides 359 

more nitrite flux and higher levels of total nitrogen removal
49

 it comes at an energy cost; one 360 

study of an MLE process requiring 10 mg/L effluent total nitrogen found that the energy required 361 

for recirculation pumping comprised 9% of the total energy needed to operate the process
158

. For 362 

the denitritation step, a biofilm system will retain the slow-growing denitrifying microorganisms 363 

best along with VFA-consuming denitrifiers. A number of energy efficient configurations could 364 

be used, including MBBRs or fluidized bed systems, where an inert carrier supports biofilm 365 

formation.   366 

6. Moving Forward 367 

Coupling nitrogen removal with anaerobic treatment of domestic wastewater requires improved 368 

understanding of the key microbial metabolic processes involved and presents opportunities to 369 

create novel reactor configurations and sensor-based control strategies. We contend that 370 

bioprocess models, which can be validated in lab- and pilot-scale studies, are an integral step to 371 

developing these treatment technologies because they help us understand how different reactor 372 
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configurations and operating strategies control the complex microbial population interactions 373 

within them.  Significant research efforts are underway to identify functional and reliable reactor 374 

configuration and operational strategy combinations that support the microbial metabolisms 375 

needed to achieve energy efficient nitrogen removal goals. Advancing these technologies is 376 

critical to making energy neutral or positive wastewater treatment via anaerobic mainstream 377 

treatment economically viable in many populated regions around the world where total nitrogen 378 

regulations are in place or anticipated for wastewater treatment systems.   379 
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