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ABSTRACT: Assessing the ecological risks of the widely used cyclic
volatile methyl siloxane D4 (octamethylcyclotetrasiloxane, CAS
Registry Number 556-67-2) to aquatic systems is difficult because of
its high volatility and low water solubility, but the potential for long
distance atmospheric transport and persistence in the sediments has
placed D4 under intense regulatory scrutiny. This paper explores the
difficulties inherent in determining the toxicity of D4 to aquatic
species and reveals the increased sensitivity of aquatic species tested
within artificially closed systems compared to that of similar tests
conducted in open systems that allow natural volatilization to occur.
The concepts of narcosis mode of action and chemical activity explain
the apparent lack of toxicity of D4 to aquatic species under
environmentally realistic conditions. Discharge levels for the past 30
years during which D4 has been in use have produced field-measured
concentrations that pose negligible risk to aquatic organisms.

■ INTRODUCTION

The cyclic volatile methyl siloxane (cVMS) D4 (octamethylcy-
clotetrasiloxane, CAS Registry Number 556-67-2) has been
used widely for nearly 30 years in electronics, textiles, and per-
sonal care products, and as an intermediate in the production of
silicone polymers with a wide range of uses; registered tonnage
use for D4 is 100000−1000000 t/year in Europe alone.1

It, along with related cVMSs decamethylcyclopentasiloxane
(D5, CAS Registry Number 541-02-6) and dodecamethylcy-
clohexasiloxane (D6, CAS Registry Number 540-97-6), is
discharged through water treatment facilities into receiving
waters during both manufacturing and product use. Conse-
quently, D4 has been under intense regulatory scrutiny, in a
U.K. national assessment,2 a Dutch national assessment,3 and
an assessment by Canada for classification as a persistent, bio-
accumulative, and toxic (PBT) substance.

4 It currently is under
review by the European Union for classification as a PBT
chemical5 with subsequent restrictions in use due to perceived
risks to aquatic ecosystems.1 However, assessing the ecological
risks of discharges of D4 to aquatic systems is difficult.
As with other chemicals in its class, D4 is highly volatile

(vapor pressure of 132 Pa at 25 °C) and has a low water
solubility (56.2 μg/L),2 which presents challenges when
standard aquatic toxicity tests are attempted. Additionally,
D4 readily sorbs to carbon, thus reducing its bioavailability
to aquatic species and increasing its level of binding to
sediments. These properties are similar to those of other
sparingly soluble substances; even the apparently simple com-
parison of measured or modeled water concentrations with
toxicity thresholds derived from laboratory tests has a high

degree of associated uncertainty.6 These same properties raise
concern about the potential for the chemical to cause harm to
the environment because of its long distance atmospheric
transport and persistence in the sediments. Similarly, the high
octanol−water partition coefficient of D4 (log Kow = 6.49 at
25 °C) raises concerns about biomagnification in the aquatic
food web with possible but unpredictable effects on high-
trophic level consumers.1

While many of the existing data on aquatic toxicity are well-
known,5 several studies have not been previously published,
and the limitations and uncertainties in the use of the data to
predict risk of D4 to aquatic species have not been adequately
addressed. This paper explores the difficulties inherent in
testing toxicity to species that live in the water column
(hereafter termed “aquatic species”) of a volatile, super-
hydrophic (log Kow ≥ 7) chemical7 such as D4 and examines
D4 water concentrations measured in representative water
bodies to determine if laboratory test conditions are reflective
of real-world conditions. The narcosis mode of action of D48

explains its low toxicity to aquatic species, and chemical
activity9 can be used to convert laboratory test results and
environmental measurements to similar units to demonstrate
a lack of environmental risk from water-only exposures.
The result is a clearly described, science-based assessment of
potential risks to aquatic species exposed to measured envi-
ronmental concentrations of D4.
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■ MATERIALS AND METHODS

Most of the aquatic toxicity tests for D4 were conducted from
the 1970s to early 1990s and included tests of three species of
freshwater fish,10−13 one saltwater fish,10 two invertebrates,10

and one algal species14 (Table 1). A suite of studies conducted
by Sousa et al.10 used nonstandard exposure systems and
techniques to force the chemical into solution, because of the
high volatility, low water solubility, and superhydrophobicity of
D4. These systems included use of stock solutions at
concentrations higher than the theoretical water solubility
limit to maximize the dissolved concentration of D4, renewal of
the stock solution every 24−48 h, and maintaining the entire
system (i.e., dilutors, tubes, and exposure chambers) with no
exposure to air (i.e., no air−water interface). These techniques
were later recommended in OECD guidelines for aquatic
toxicity testing of difficult substances.15 Sousa et al.10 also used
a flow-through toxicant delivery system to minimize chemical
sorption to surfaces of the test apparatus. This approach
achieved a functional water solubility of 6.3 μg/L (hard water)
to 22 μg/L (softwater) in freshwater and 6.3 and 9.1 μg/L in 20
and 30 ppt saltwater, respectively (Table 1); these concen-
trations are below the maximal solubility of 56.2 μg/L
measured in pure laboratory water. Functional water solubility
is defined herein as the maximal achievable solubility of
D4 under the specific conditions and dilution water quality for
a particular study. An algal growth study14 was conducted
in a static, closed system with no headspace. An inadvertent
consequence was a reduction in the overall rate of growth
of the algae in both the control and treated flasks due to a
decreased level of oxygen.15

For all acute and chronic (long-term) toxicity tests con-
ducted within these closed systems (Table 1), reduced survival
occurred only in adult rainbow trout (Onorhynchus mykiss)
after exposure for 14 days at ≥6.9 μg/L D4,10,11 but no mortal-
ity occurred in early life stage trout exposed for 93 days to
4.4 μg/L D4 (maximal concentration tested).10 Toxicity tests
with rainbow trout conducted in open systems that allowed
volatilization to occur showed mortality at 23 μg/L after
exposure of a 1 g fish for 18 days, but no mortality occurred
in 5 g fish exposed for 18 days to 31 μg/L D4.12 No effects
(e.g., mortality, behavior, or body condition) were observed in
fathead minnow (Pimephales promelas)13 or the saltwater
sheepshead minnow (Cyprinodon variegatus)10 exposed up to
functional solubility limits in prolonged toxicity tests. Water
fleas (Daphnia magna) within a closed system experienced
reduced survival after exposure for 21 days to the maximal
concentration tested (15 μg/L), but reproduction was not
affected.10 Their survival (77%) was only slightly below the
allowable 80% survival rate for controls. Saltwater mysid shrimp
(Americamysis bahia) were not affected at the functional
solubility of D4.10 The cell density of freshwater green algae
(Pseudokirchneriella subcapitata) was not reduced at concen-
trations of up to 22 μg/L when compared to that of control
vessels with a similarly reduced headspace.14

■ RESULTS AND DISCUSSION

It is not surprising that D4 has no toxicity or a low level of
toxicity in most aquatic species. Like most hydrophobic
chemicals, D4 acts via a narcosis mode of action, which
requires the accumulation of the chemical in the tissues to
achieve a critical (toxic) body burden.8 As with other cVMS
chemicals, D4 is slow to build up in aquatic organisms,

particularly during toxicity tests in which the test specimens are
not fed. This primarily is due to high metabolism and excretion
rates, so much longer test durations are needed to reach the
“critical body burden” (CBB) required to cause nonpolar
narcosis.7 Mackay et al.7 calculated that, on the basis of its
physical properties, the time predicted for D4 to reach the CBB
needed to cause a 50% effect in rainbow trout is roughly
25 days. The authors concluded that for hydrophobic chemicals
such as D4, conventional aquatic toxicity tests with exposure
from water respiration for 96 h to 14 days often will fail
to reach a toxic end point, especially if there is appreciable
biotransformation of the substance. For example, a test with
adult rainbow trout exposed to D4 in an open, flow-through
system showed no toxicity after 14 days, at concentrations of
up to 51.7 μg/L, the natural functional solubility of the
chemical.11 Although the early life stage rainbow trout study
conducted by Sousa et al.10 lasted 93 days, the rapid growth of
the larval fish likely resulted in growth dilution such that
critical body residues were not achieved even at the functional
water solubility concentration. Thus, the occurrence of
mortality in adult rainbow trout after exposure for only
14 days is surprising. It may be that forcing the chemical into
solution with no headspace for volatilization to occur created
some emulsive characteristics that affected the gill surfaces,
resulting in a physical effect rather than chemical-induced
narcosis.16

Assuming the results of the 14 day rainbow trout study in a
closed system by Sousa et al.10 are representative of what would
occur in the natural environment begs the question of whether
environmental concentrations ever reach such a level. Water
samples have been collected from, and D4 levels measured in,
freshwater and marine sites in Tokyo Bay,17 many Scandina-
vian countries,18 and receiving water downstream of munici-
pal and industrial wastewater treatment plants in Canada.19

Figure 1 presents the D4 concentrations of these waters in a

cumulative probability distribution20 and compares these con-
centrations to the D4 rainbow trout LC10 concentration for sur-
vival of 7 μg/L [95% confidence interval (CI) of 4−12 μg/L]
(the lowest reported fish LC10) and the Daphnia LC10 for
control-adjusted survival of 12 μg/L (95% CI of 7−56.2 μg/L).10

Although the authors calculated LC50 concentrations (see Table 1),
the LC10 values were calculated from the data presented and

Figure 1. D4 water concentration distribution from different locations
in Japan,17 Europe,18 and North America19 vs rainbow trout LC10 and
D. magna concentrations,10 and regulatory PNEC values.4,21 Green
symbols represent data for nondetectable D4 residues assumed to be
present at 50% of the D4 minimal detectable level (MDL); blue
symbols represent measured D4 concentrations in water.
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used in the figure as conservative hazard estimates for com-
parison with environmental concentrations. Because selection
of an “x” in the LCx/ECx used in a risk assessment is a matter
of policy, not science, the figure also includes the predicted no
effect concentrations (PNECs) of 0.2 μg/L used by Environ-
ment Canada4 and 0.44 μg/L used by the United Kingdom as
the competent authority for the European Union21 for
regulatory assessments of D4; these values are the rainbow
trout LC50 and NOEC divided by uncertainty factors of 50
and 10, respectively, to account for interspecies and
lab-to-field extrapolations. The calculated 95th percentile D4
water concentration is 0.1 μg/L (N = 64), or 2 times lower than
either of the ecotoxicology trigger values and >40 times lower
than measured LC10 values. These data indicate a lack of
overlap between measured environmental concentrations of
D4 in the water column and the toxicity threshold values for
aquatic species, indicating a lack of risk in aquatic systems.
This approach is a highly conservative risk estimate, as it is
based on tests conducted in artificially closed systems to reduce
volatilization and increase the extent of chemical saturation.
In addition, a majority (33 of 64 samples) of the water resi-
due data in Figure 1 are samples with no detectable D4 and
are set at 50% of the limit of detection as a conservative
estimate.
The conclusion that D4 is nontoxic to water column

organisms up to its limits of functional water solubility is fur-
ther substantiated by addressing the “activity” (or fugacity) of
the chemical. The use of activity to describe the degree of
saturation achieved by a compound in a given medium is
particularly useful for substances that display a narcosis mode of
action in aquatic organisms, such as D4,8 as chemical activities
may provide valuable estimates of the proximity of measured
concentrations to potentially toxic levels.9 Chemical activities
are easy to calculate and allow the comparison of concentration
data in various matrices with differing units. Chemical activities
are simply the ratio of a concentration and its solubility,
adjusted for salinity, amount of particulate matter, and carbon
content.22 Activities of concentrations in biota are the ratio of
the lipid-based concentration and the apparent solubility of the
chemical in lipid, which is approximated by the compound’s
octanol−water coefficient (Kow) and its aqueous solubility
value. This allows expression of all data to range from 0 to 1,
resulting in easy comparison of biota and environmental
matrices. An analysis of the chemical activity of D4 in aquatic
systems and aquatic organisms is presented in Figure 2. The
NOEC values for aquatic organisms exposed to D4 (Table 1)
were calculated as the aqueous concentration divided by the
functional solubility for each test, resulting in NOEC D4
activities of 0.02−1.0, with a mean value of 0.52. Chemical
activities for field-collected fish and invertebrates are approx-
imately 10−7 to 10−6, based on tissue concentrations in biota
collected simultaneously with the water sampling referenced
above. The measured chemical activities of D4 in the water
samples presented in Figure 1, adjusted for site-specific sali-
nity and organic carbon, are approximately 10−5 to 10−3, far
lower than the NOEC values. Overall, these data show that
chemical activities of D4 in biota cannot reach values that are
associated with nonpolar narcosis (i.e., toxicity) and that
discharge levels for the past ∼30 years have produced field-
measured concentrations that pose negligible risk to aquatic
organisms.
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