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ABSTRACT

In this paper, we describe the development, implementation and application of a novel mathematical procedure
devoted to formulating the daily load profiles of off-grid consumers in rural areas. The procedure aims at provid-
ing such profiles as input data for the design process of off-grid systems for rural electrification. Indeed, daily load
profiles represent an essential input for off-grid systems capacity planning methods based on steady-state energy
simulation and lifetime techno-economic analyses, and for the analysis of the logics to control the energy fluxes
among the different system components. Nevertheless, no particular attention has been devoted so far in the
scientific literature as regards specific approaches for daily load profiles estimates for rural consumers. In order
to contribute to covering this gap, we developed a new mathematical procedure taking into consideration the
specific features of rural areas. The procedure is based on a set of data that can be surveyed and/or assumed in
rural areas, and it relies on a stochastic bottom-up approach with correlations between the different load profile
parameters (i.e. load factor, coincidence factor and number of consumers) in order to build up the coincidence
behavior of the electrical appliances. We have implemented the procedure in a software tool (LoadProGen)
which can eventually support the off-grid systems design process for rural electrification. Finally, we have applied

the procedure to a case study in order to clarify the proposed approach.
© 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved.

Design process of off-grid systems for rural electrification and users’
electric consumptions

At the world level, about 1.3 billion people live without access to
electricity and nearly 82% of these people live in rural areas of develop-
ing countries. This number is not expected to significantly change in the
next decades. Indeed, according to the WEO 2014, 0.5 billion people are
expected to remain without access to electricity in the New Policy Sce-
nario (IEA, 2014). Moreover, by comparing this scenario with the Uni-
versal Access Scenario proposed by the IEA in 2012 (IEA, 2012), it
clearly emerges that in order to provide electricity to these people, it
is required to consider other options besides the traditional centralized
electrification approach. In particular, off-grid systems (i.e. stand-alone
and micro-grid systems), mainly based on renewable sources of energy
and integrating storage, are often the only feasible solution for the sup-
ply of electricity in rural areas. The design process of such systems re-
quires special attention since it deals with unpredictable energy
sources, unknown or uncertain electric consumptions and it is a joint
matter of cost-saving (affordability), appropriate sizing (reliability)
and long-term duration (sustainability). Moreover, the scenario for
rural areas of developing countries is complicated by the well-known
lack of information about both users' electric consumptions and energy
sources' availability. Indeed, in most rural electrification actions, prece-
dent experiences are not available to base the system design on.
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Users' electric consumption is a key element in the design process of
off-grid systems especially when dealing with unpredictable renewable
sources, when integrating multiple sources and when including energy
storage. In fact, such information is necessary in the different phases of
the design process; e.g. to appropriately perform the sizing of power
sources and storage capacities, to analyze and optimize the logics to
control the energy fluxes among the different components and to
study the real-time power control of the system (i.e. voltage and current
regulation).

In the scientific literature, depending on the design phase undertak-
en and the method employed, information about users' electric
consumptions has different degrees of detail:

= [ntuitive sizing methods, based on simple algebraic relationships be-
tween power requirements and energy sources availability, typically
rely on average daily electric consumptions of the targeted group of
users (Elhadidy and Shaahid, 2000; Ahmad, 2002; Bhuiyan and Ali
Asgar, 2003; Mandelli et al., 2014).

= Capacity planning methods, based on steady-state energy simula-
tion, heuristic or analytical optimization and analyses of the logics
to control the energy fluxes among the different system compo-
nents, typically rely on daily load profiles (Barley and Winn, 1996;
Shen, 2009; Belfkira et al., 2011; Bekele and Tadesse, 2012). In
these cases, load profiles are a numerical series, the values of
which define the average constant power load required by the
users within a given time-step. Usually, 24 values represent the
hourly average powers load which define the daily profile.

0973-0826/© 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
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= Real-time power control analyses, based on circuital or block-set
models comprising power electronics and system control compo-
nents, typically rely on short-term load profiles (Ozaki et al., 2010;
Chen et al,, 2012). In these cases, load profiles are continuous func-
tions which represent the power loads required by the users for a
few seconds/min.

It is worthwhile to highlight that in all these methods, besides input
data concerning users' electric consumptions, data about the availability
of unpredictable renewable sources (i.e. mainly solar and wind) are also
required. Obviously, when they are not available, they have to be esti-
mated, and this is typically what occurs in rural areas of developing
countries. Nevertheless, for renewable sources, data can be retrieved
from weather stations usually located in the main nearby cities, several
databases are available (see for example GeoModel Solar; IRENA; NASA;
SANEDI), and a number of models have been developed (see for exam-
ple Graham and Hollands (1990); Oliva (2008); Huld et al. (2012). As
regards users' electric consumptions, it can be noticed that no particular
attention has been devoted to introducing proper modeling or methods
for their estimate.

In this paper, we address this issue and we describe the develop-
ment, implementation and application of a novel mathematical proce-
dure to formulate daily load profiles. The procedure is based on
microscopic data about users' classes, electrical devices and usage
habits, and employs a bottom-up stochastic approach to build up a real-
istic coincidence behavior. Its application addresses the design process
of off-grid systems for rural electrification, and in particular capacity
planning methods as well as analysis of energy fluxes control.

In Brief literature overview of user's electric consumptions model-
ing, we provide a brief overview of the literature dealing with the user's
electric consumptions modelings and we highlight the lack of a dedicat-
ed area of interest in daily load profiles formulation for rural off-grid
systems. In Formalization of literature-based approaches to formulate
daily load profiles for rural areas, we formalize two approaches to for-
mulate daily load profiles for rural areas on the basis of the
unstructured methods sometimes employed in the literature. In New
mathematical procedure proposed, we describe the development of
the new procedure by introducing the targeted general features, the
required input data and we present its mathematical formulation. In
Implementation of the new procedure: the software LoadProGen, we in-
troduce the algorithm that implements the procedure in a software
tool—LoadProGen—which supports the formulation of daily load pro-
files. Finally, in Application of the new procedure in a case study, we
present the application of the new procedure for a college in a small
town in Cameroon comparing the profiles formulated via LoadProGen
with the real ones we metered in-field. The detailed input data for this
application are reported in the Appendix. They were collected during
in-field missions via local observations, surveys and questionnaires as
regards people's habits and electrical appliances.

bottom-up models top-down models

computation of energy consumption
for an household or group of
households and aggregation to the
total housing stock

macroscopic data

A 4

housing stock
A

housing stock

attribution of energy consumptions to
the targeted housing stock according
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Fig. 1. Bottom-up and top-down model approaches (Swan and Ugursal, 2009).

Table 1
Description of input data required by literature-based approaches.

i Type of electrical appliances (e.g. light, mobile charger, radio, TV)

j Specific user class (e.g. household, school, stand shop, clinics)

N;  Number of users within class j

n;  Number of appliances i within class j

P;  Nominal power rate [W] of appliance i within class j

hi ~ Overall time each appliance i within class j is on during a day [h]:
functioning time

7. wgy Period(s) during the day when each appliance i within class j can be on:

functioning windows

DUk WN =

Brief literature overview of user's electric consumptions modeling

The study of user's electric consumptions has been widely addressed
within different research themes and with different purposes. These can
be grouped into two main areas:

= Power system engineering refers to load forecasting as the domain of
models able to provide data for setting the best planning and operat-
ing of grids. Load forecasting can be divided into three categories:
(a) short term, which is used to predict loads from 1 h to a week
ahead and is required to solve unit commitment and economic
load dispatch problems; (b) medium term, which is used to predict
weekly, monthly and yearly peak loads up to 10 years ahead and is
required for efficient grid operational planning; and (c) long term,
which is used to predict loads up to 50 years ahead and is required
for grid expansion planning. Examples are shown in Jia et al.
(2001); Al-Hamadi and Soliman (2005); Carpinteiro et al. (2007);
Li and Meng (2008); Javed et al. (2012); Liu et al. (2014); and Lee
and Hong (2015).

= Energy planning research refers to energy consumption modeling as
the domain of models able to support energy-related policy deci-
sions. Energy consumption modeling deals with energy consump-
tions for a country, a region or a sector and they can be grouped
into two categories: (a) top-down, which is used to determine the ef-
fect on consumptions due to ongoing long-term changes in order to
assess future supply requirements, and is based on econometric or
technological models; (b) bottom-up, which is used to model con-
sumptions of each end-use and hence to identify areas for efficiency
improvements at user level, and is based on statistical or engineering
models (Fig. 1). Examples are shown in Howells et al. (2005); Swan
and Ugursal (2009); Song et al. (2011); Zhang and Zhong (2011); Li
et al. (2015); and Xu et al. (2015).

Despite the large number of scientific papers that have addressed
these themes, only a few of them specifically focus on the estimate of
daily load profiles for off-grid systems. Moreover, most of them deal
with the particular case of domestic electric consumptions in developed
countries and they are mainly devoted to support decisions as regards
distributed generation integration in power systems, analysis of
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Fig. 2. Graphical representation of functioning windows for a single appliance.
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Table 2
Input data required by the new procedure.

i Type of electrical appliances (e.g. light, mobile charger, radio, TV)

j Specific user class (e.g. household, school, stand shop, clinics)

N;  Number of users within class j

Number of appliances i within class j

P;  Nominal power rate [W] of appliance i within class j

hi ~ Overall time each appliance i within class j is on during a day [min]:
functioning time

Sk W=
el
£

7. wg; Period(s) during the day when each appliance i within class j can be on:
functioning windows

8 dyj  functioning cycle [min], i.e. minimum continuous functioning time once
appliance ij is on

9. Rhy %random variation of functioning time appliance ij

10. Rwj; % random variation of functioning window appliance ij

demand side management measures, impacts of various scenarios on
local power demand, etc. In this regards, Grandjean et al. (2012) have
recently revised and described 12 models for daily load profiles formu-
lation within the residential sector. They classified these models into
three main categories: bottom-up, top-down and hybrid. Then, a further
five sub-divisions were proposed according to the way the coincidence
behavior, which is the key parameter in load profile formulation, was
modeled: deterministic statistical disaggregation models, statistical ran-
dom models, probabilistic empirical models, time of use-based models
and statistical engineering models.

In the light of the mentioned literature and to the authors' knowl-
edge, it is worthwhile to highlight that no structured and formalized
models have been developed so far to formulate daily load profiles to
support the design process of off-grid systems. Moreover, in the specific
research field of off-grid rural electrification, this is true not only when
looking at the literature which focuses on developments of new sizing
methods and models but also when looking at their applications or sys-
tems feasibility analyses. Only Celik (2007) brought about the issue of
load profiles and system sizing for stand-alone PV systems.

In practice, researchers in this field generally introduce daily load
profiles in three manners:

m Profiles are defined without any explanations about their origin
(Bala and Siddique, 2009; Nandi and Ghosh, 2010; Kanase-Patil
etal, 2011).

» Profiles are derived by employing other ones from similar contexts
(Nfah and Ngundam, 2009, 2012; Phrakonkham et al., 2012;
Semaoui et al.,, 2013; Sen and Bhattacharyya, 2014).

= Profiles are formulated without any defined procedure, but by
employing assumptions on electric appliances functioning periods
and/or load factors, in order to build up a coincidence behavior
(Al-Karaghouli and Kazmerski, 2010; Gupta et al., 2010; Bekele
and Tadesse, 2012).

In our opinion, these approaches cope without the appropriate at-
tention with the theme of daily load profiles formulation. In particular,
none of them are based on a structured procedure which is recognized
as appropriate for application in capacity planning methods and analy-
sis of energy fluxes control for off-grid systems in rural areas. In the fol-
lowing sections, we contribute to filling this gap by proposing the

Table 3
Example of input data for a user class.

formalization of two approaches based on the literature and by intro-
ducing a novel new mathematical procedure.

Formalization of literature-based approaches to formulate daily
load profiles for rural areas

Despite no structured procedures being reported in the literature,
we formalize two possible approaches that can be considered as refer-
ences for state-of-the-art in daily load profile formulation for rural
areas. We consider them as literature-based approaches and refer to
them as Lit_Appr1 and Lit_Appr2. They are described in the following.

The purpose of both approaches is to compute a daily load profile of
a number of rural consumers who are grouped according to different
user classes j having different electrical appliances i. Table 1 reports
the list of input data required by the two approaches. Specific features
of Lit_Appr1 and Lit_Appr2 are:

= They require a classification of user classes and electrical appliances
together with data about the number of users and appliances, i.e.
they are bottom-up approaches.

= They assume that each appliance is modeled with its nominal power
(i.e. no power cycles are considered).

= They require data about the daily overall time each appliance is in
use, i.e. the functioning time.

= They require defined period(s) during the day when each appliance
can be in use, i.e. the functioning window(s) (Fig. 2).

= Both the functioning times and the functioning windows are typical-
ly defined according to a minimum time-step of one hour.

These data are the necessary minima required to formulate a daily
load profile of a given group of consumers in rural areas. They can be
easily assumed based on practical experience on similar context condi-
tions or by mean of local surveys. Appliances’ functioning times and
functioning windows are the most significant data since they determine
the daily electric energy consumption and the coincidence behavior of
the appliances, respectively. Given the same group of users and
appliances, different sets of functioning times and functioning windows
define different load profiles. This can be employed to formulate
different load profiles for the same targeted group of users according
to seasonal change, working days/weekends, etc.

It can be noticed that given the types of appliances, the user classes,
the number of users, the number of appliances, the appliance rate pow-
ers and the functioning times, the daily electric energy consumption E¢
is set and can be computed as follows:

User Class ‘Appliance
Ec = Nj *

> n,,-*P,»j*hij> [Wh/day] 1)

Jj i

This is the same for the two literature-based approaches which, on
the contrary, differ because of the relationship between functioning
times and functioning windows, i.e. because of the method, the daily
electric energy consumption (related to the functioning times) is dis-
tributed throughout the day (related to the functioning windows) de-
fining the coincidence behavior of the appliances.

WF,ij—‘l hstare

Class type j N; App. name i Py [W] Nj d;j [min] hi; [h] WEjj_2 W3
stop
Household 55 Lights 10 4 10 6 17 24 - - - -
Phone charger 5 2 30 3 0 9 13 15 21 24
Security lights 20 1 30 12 0 7 19 24 - -
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Lit_Appr1 is characterized by the following condition in the relation-
ship between functioning times and functioning windows:

> “duration(wry) = hy  Vij )

i.e. the functioning windows of each appliance ij is set in order that the
sum of their durations is equal to the functioning time h;;. Accordingly,
all the n; appliances are on at the same time and the coincidence factor
is equal to 1 for each appliance ij. Lit_Appr1 requires defining how long
and when the appliances are on without considering any coincidence
behavior. Thus, the peak power is overestimated, and in general, the
profiles are not flat, but have high or low values.

Lit_Appr2 is based on the following condition on the relationship be-
tween functioning times and functioning windows:

> duration(wgy) > hy  Vij 3)

in addition, the contribution of each appliance in formulating the load
profile is computed as follows: first, the electric energy consumption
E, i associated with each appliance ij is computed (Eq. (4)); then, an av-
erage power P, ;; associated with each appliance ij within its function-
ing window is calculated (Eq. (5)). The values Pq, ; are those which
contribute to building up the load profile.

Epjj = Pjj = hy (4)

Epj
P = ki 5
awl § duration(wp ;) )

In Lit_Appr2, the power contribution of each appliance ij to the load
profile refers to the average power computed by “spreading” the con-
sumed energy on the total duration of the functioning windows. In
this way, the coincidence factor assumes the minimum value possible
given by the functioning times and functioning windows. Hence, the
power peaks are underestimated, and in general the profiles are flat.

Having in mind the two literature-based approaches, some consider-
ations can be made:

= Both approaches formulate load profiles which are subjected to a
certain degree of subjectivity, mainly in setting the functioning win-
dows, owing to the operator that defines the input data. This is typ-
ical of the conditions in rural areas which does not allow for the
collection of detailed information. This aspect highlights the issue
of uncertainty in the input data and hence that given a certain set
of data, formulating a single profile cannot represent a realistic situ-
ation.
A hybrid method, which provides for properly selecting and apply-
ing for some appliances Lit_Appr1 and for others Lit_Appr2 according
to their typology, can compensate for the limitations of the two ap-
proaches. Nevertheless, this requires further specific information
about each appliance thus leading to the introduction of further sub-
jectivity in the input data and hence further uncertainty.
= Embracing uncertainty in order to differentiate a number of realistic
load profiles given the same set of input data can be performed by
introducing a random noise on the formulated profile. This is the so-
lution adopted in the HOMER Energy software (HOMER Energy LLC,
2014) which is a well-known tool in the field of off-grid systems de-
sign. Nevertheless, uncertainty is considered ex-post the load profile
formulation by means of literature-based approaches.

Lit_Appr1 and Lit_Appr2 represent simple, engineering-based, struc-
tured procedures that can be applied to formulate daily load profiles for
rural areas. Nevertheless, as highlighted by the previous considerations,
they have some limitations. In this regard, we describe in the following a
novel mathematical procedure taken from these literature-based ap-
proaches, but it embraces elements of advanced electric consumption
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Fig. 3. Peak window definition, example based on data from Table 3. In this case, all the
appliances contribute to the power peak definition.

modeling techniques in order to properly formulate daily load profiles
for rural consumers.

New mathematical procedure proposed

In setting the framework to develop the new procedure, the charac-
teristics of an ideal method for load profiles formulation have been
taken as a reference. An ideal model should present the following fea-
tures (Grandjean et al., 2012):

= [t has to be parametric in order to simulate various scenarios.

= [t has to be technically explicit, i.e. the different specificities of the
simulated appliances must impact the load profile results.

= [t has to be evolutive, i.e. new elements can be introduced so as to be
simulated.

= [t has to be aggregative so that results can be obtained at different
levels (household, city, region, etc.).

= All end-uses can be considered in the load profile calculations.

In the light of this reference, a new procedure has been developed in
order to embrace the following features:

= [t has to be based on input data that can be easily assumed based on
practical experience on similar context conditions or by mean of
local surveys.

= |t has to be based on a rigorous mathematical formulation which
allows generating the load profile, i.e. apart input data, the designer
judgments should not affect the profile shape.

= [t has to be bottom-up, i.e. the load profile formulation has to rely on
microscopic input data referring to each appliance’s features within
a specific type of user class.
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Fig. 4. Relationship between coincidence factor, load factor and number of consumers in a
class.
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Fig. 5. Block representation of the algorithm for load profile formulation.

= [t has to build up the coincidence behavior of the appliances and the
power peak value with regards to the existing empirical correlation
between number of users, load factor and coincidence factor.

= [t has to be stochastic in order to embrace uncertainty, i.e. given the
input data, the procedure output should allow formulating a number
of realistic profiles within the given input data.

Moreover, it is relevant to point out that the main purpose of this
procedure is not to forecast load profiles, but rather to formulate load
profiles. Specifically, we refer to forecasting load profiles as the process

Table 4
Summary of energy consumptions for household user classes.

of evaluating the future consumptions trend of a group of consolidated
electric users. This is the typical issue addressed with different purposes
in the literature. Our aim is different though; indeed, we refer to formu-
lating as the process of evaluating the consumptions trend of expected
new consumers in an off-grid rural area without access to electricity. In
this perspective, the main objective of the new procedure is to support
capacity planning methods and analyses of energy fluxes control for off-
grid systems for a rural electrification system by computing possible
realistic daily load profiles according to a formalized method which
considers elements of the advanced techniques developed within the
user's electric consumptions modeling research field.

Class type NUS Eclass,day II(Wh/dayI Euser,day IkWh/day] Epc,year* IkWh/yeaF/PCI
Household_1 18 36.5 2.0 176.1
Household _2 14 30.1 2.1 186.7
Household _3 11 8.1 0.7 64.3

s

on average 4.2 people per households.
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Table 5
Summary of energy consumptions for college facilities user classes.

Class type Nus Eclass,day [KWh/day]
Students' dormitories 1 12.2
Classrooms 1 13.0
Kitchen 1 29
Bakery 1 1.0
Dining hall 1 0.9
Canteen 1 0.9
Workshop 1 0.7
Dispensary 1 0.4
Church 1 2.0
Administration office 1 7.9
Library 1 3.5
ICT college 1 20.1

With respect to the hypotheses and the aforementioned features, a
novel procedure has been developed; in particular, Table 2 shows the
adopted input data structure while Table 3 reports an example of such
a structure for a generic rural user class.

Besides the input data already managed in the literature-based ap-
proaches (Table 2, 1-7), new ones are requested: the functioning
cycle (dj), and the parameters of random variation of functioning time
(Rhy;) and windows (Rwg;). Moreover, the functioning times, the func-
tioning windows and the functioning cycles are defined according to a
minimum time-step of one minute.

Having in mind these input data, some considerations can be made:

= The new procedure follows a bottom-up approach.
All the appliances are modeled with an on-off functioning mode and
considering a minimum continuous functioning cycle (dj). For ex-
ample, a functioning cycle of 45 min may be suitable for an oven
while a functioning cycle of only 2/3 min may be suitable for a blend-
er.
In order to consider a degree of uncertainty in the values of h; and
W, random parameters Rh;; and Rwg; are introduced, respectively.
They set the maximum percentage of h; and wg;; subjected to ran-
dom variation.
= Given all the input data and apart from considering the effect of Rhy;,
the total required daily electric energy of each user class is defined
(Eq. (1))
= Given all the input data, a possible theoretical maximum power peak
for each user class is defined. Indeed, overlapping the functioning
windows for the different appliances within a class, a window
(peak window) will result to be embraced by a number of appliances
hence defining a possible maximum power peak considering a coin-
cidence factor equal to 1 (Fig. 3). For the example shown in Table 3,
the class peak can occur from 21:00 to 24:00, and the maximum
value can be 3.85 kW.
According to previous considerations, a load factor for each user
class relating to the maximum possible peak power and the total re-
quired daily electric energy can be computed.

18

In the following, we provide a mathematical formulation of the new
procedure according to an objective function and constraints.

Objective function

The load profile of each appliances ij is computed by defining, in a
stochastic manner, the times t; the appliance ij is switched on within
the vector of the daily minutes [1:1440]. Hence, having the switching
on times t; and the functioning cycles dy, the load profile of each appli-
ance is defined. Then, the daily load profile of the user class j results
from the aggregation of single appliance profiles ij. Accordingly, the
overall daily load profile results from the aggregation of the user classes'
profiles j.

Constraints

= The functioning cycles must be shorter than functioning times:
dj <hj  Vij (6)

= The functioning times must be shorter or equal to the total duration
of functioning windows:

> duration(wg) 2 hy  Vij (7)

where equality applies only when wg;; are exactly well-known.

= The amount of functioning cycles (n.;) occur in a day for each appli-
ance ij is defined as follows:

h;; + random (h;; * Rh;;
nt,ij Y dl]( ij * l]) (8)

where random(h;;*Rh;;) refers to the computation of a random value de-
fined in [— (h;*Rhy;), + (hi*Rhyj)]. n.; also coincides with the amount of
times each appliance is switched on.

= The functioning window(s) wg;;, which define the periods when t;;
can occur, is defined as follows:

WEjj = Wi + random(wg j = Rwr ;) 9)

where random (wg;;*Rwg;;) refers to the computation of random values
for the starting and ending times of the functioning window(s) ij.

= Power peak time (tp;) (i.e. the time power peak occurs) of each user
class j is randomly chosen with uniform probability distribution
within the peak window of the class (Fig. 3).

= ;;are defined by random sampling within the respective functioning
windows with two probability distributions: (i) for appliances

16
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which do not contribute to the peak, sampling is carried out with
uniform probability distribution; (ii) for appliances which contrib-
ute to the peak (e.g. all the appliances in Fig. 3), sampling is carried
out with normal probability distribution having mean value on tp;.
Starting from each t;; the appliance ij is on for the following d;; mi-
nutes.
= Standard deviation of the normal probability distribution for appli-
ances contributing to the peak is defined in order to obtain, within
each user class j, a power peak value which complies with the peak
power obtained via the correlation between coincidence factor
(Eq. (10)), load factor (Eq. (11)) and number of users N;j.

Prj

Y 10

fc’] Pmaxj (10)
_ Ej

fL'j724hxpL‘j (1)

where p, j represents the actual power peak; pyax; represents the possi-
ble theoretical maximum power peak and E¢; represents the daily elec-
tric energy consumption.

The appearance of this empirical correlation has been reported by
recent reviews (Grandjean et al., 2012) as well as analyses of distribu-
tion grid expansion (Willis and Northcote-Green, 1983; Gaunt, 1996).
The general formulation of this correlation results as follows:

fey=asfuy+ (1=axfi) <N 12

where a is the ratio between the coincidence factor for infinite con-
sumers fc;(e) and f; j, and it is expressed as regards the probability p that
single consumers' peaks occur at the same time:

a=[1-(1-p)"] (13)

1
p
p=b+cse el (14)

p is formulated to conform to Gauss' normal probability distribution.
The proposed parameters of Eq. (15) have been empirically calculated
providing the following formulation:

p = 0187 + 0813 4[(1=F1) +(1-11)"] (15)

Eq. (12) is quite important since it allows embracing in the new pro-
cedure information about the user classes power peaks and it also deter-
mines the probability distribution which affects the simulation of
switching on time of the appliances. In Fig. 4, we report a graphical rep-
resentation of this correlation according to the empirical parameters of
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Fig. 7. Load profile resulting from Lit_Appr1.
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Fig. 8. Load profile resulting from Lit_Appr2.

Eq. (15). These trends can be explained by analyzing the relation be-
tween coincidence factor and load factor for a given number of con-
sumers and then considering the effect of a different number of
consumers.

Implementation of the new procedure: the software LoadProGen

We developed an algorithm which implements the mathematical
procedure. It is based on MATLAB and we call it LoadProGen (i.e. Load
Profile Generator). Given a set of input data, it can formulate n load pro-
files all complying with the given inputs. It can work as a support tool to
formulate load profiles to be employed in the design process of off-grid
systems for rural electrification. In Fig. 5, a block representation of the
algorithm is presented. In particular:

= The algorithm develops the profiles of each single user class defined
by the designer with a bottom-up approach. Then, the final load pro-
file is given by aggregating each user class load profile.

= The algorithm is divided into three sections: (i) input data, which
highlights different groups of required inputs; (ii) operational ele-
ments, which considers the different computational steps, and (iii)
output data, which highlights different groups of computed outputs.

A description of the algorithm sections is presented hereafter.
Input data

These can be divided between those which are not subjected to a
first randomization and those which can be randomly modified accord-
ing to parameters Rh;; and Rwj;.

Operational elements and output data

1. The algorithm elaborates the input data in order to obtain them in
the proper form to compute the load profile: functioning times and

16 Ec= 140.2 kWh
P 17.7 kW
f, =033
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Fig. 9. Load profile resulting from the new procedure based on case LoadProGen_0.
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Fig. 10. Load profile resulting from the new procedure based on case LoadProGen_30.

functioning windows are randomized and then aggregated with the
other inputs.

2. Peak value computation. In this block, the total required energy, the
peak window(s), the possible theoretical maximum power peak
(i.e. peak value(0)), and the peak time tp; are first computed. Then,
with an iterative process, the load factor and the coincidence factor
are computed according to Eq. (12) until convergence is reached
for their values. Hence, the reference value of the power peak for
the considered user class can be computed.

3. Load curve computation. In this block, for each appliance, the
switching on times t;; are randomly selected according to the specific
probability distributions (i.e. uniform distribution if the appliance
does not contribute to the peak, normal distribution if the appliances
contribute to the peak). Accordingly, the load profile for the user
class can be computed. Nevertheless, the resulting peak may not
comply with the estimated one (previous step). Therefore, iterations
are performed by relaxing the standard deviation of the normal
probability distribution which guides the random sampling of t;; of
the peak appliances.

4. Once the resulting peak value matches, with an error defined by the
designer, the computed power peak via Eq. (12), the iterations are
stopped and the final load profile is identified.

5. Repeating steps 2, 3 and 4 for each user class and aggregating the dif-
ferent user class load profiles allows computing the final profile.

The algorithm implements the new procedure and complies with
the proposed features introduced in Paragraph 4. In particular, it is
worthwhile to highlight that by developing the load profile of each sin-
gle appliance and then by aggregating them, the coincidence behavior
within a user class is achieved in a similar way as it occurs in real
power systems. Moreover, due to the stochastic approach in defining
the peak time tp; and the switching-on times t;; the algorithm computes
a different load profile each time it is run.
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Application of the new procedure in a case study

As already highlighted, the new procedure aims at formulating the
load profiles of expected new consumers in an off-grid area without ac-
cess to electricity. Nevertheless, in the following, we propose an analysis
based on the electric consumptions of an already electrified college in a
small town of Cameroon in order to assess the applicability of the new
procedure to a real context and to analyze the results (in a real-life ap-
plication of the procedure the real energy consumptions are unavail-
able; consequently, in the case study we performed, the energy figure
has been assumed as the theoretical energy need ex-post the electrifica-
tion of the area, i.e. a benchmark). Specifically, we carried out the appli-
cation of the new procedure in two steps: (i) we formulate the load
profiles for the college by means of the two literature-based approaches
(Lit_Appr1 and Lit_Appr2) and the new procedure in order to highlight
their specific features; and (ii) we compare the formulated profiles
with those we metered in-field.

Description of the case study

The case study adopted for the new procedure is the Presbyterian
College of Bali, Cameroon (5.53 N/10.01E). All the available information
is the result of activities carried out during a two-month in-field mission
addressing the energy assessment of the college.

Currently, the college has about 1000 students and about 180 staff/
personnel who dwell in the campus day and night all week long. There-
fore, besides classrooms and offices, within the campus there are also
buildings and facilities with the everyday life needs (e.g. dormitories,
staff houses, small shops, canteen). The college is already supplied by
electricity which is provided by a three-phase 380 V connection with
the national grid managed by AES-SONEL. Nevertheless, a 24 kKVA diesel
generator is available in order to make up for the frequent grid outages.

The input datasets for load profile formulation have been devised by
collecting information about available electrical appliances and usage
habits of people via questionnaires and surveys with the college staff
and students. Accordingly, the input data for the load profile formula-
tion were defined. In Tables 4 and 5, we list the defined user classes to-
gether with a summary of energy related features, while in the
Appendix, we report the detailed input datasets. Globally, the collected
information provide for a daily total consumption of the college of
140.2 kWh, which amounts to 43.4 kWh/year/per capita considering
students and staff.

Moreover, we also collected data as regards the actual consumption of
the school. Similar to the typical situation in developing countries,
metering of college power loads was a challenging task. Frequent outages
of the grid, switching on the back-up diesel generator, instability of the
power supply (frequency and voltages vary within very wider ranges
when compared with industrialized countries grids) and lack of data as
regards electrical distribution system, connections and switches are all
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Fig. 11. Comparison between Lit_Appr1 (bar profile) and the metered data (gray band).
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Fig. 12. Comparison between Lit_Appr2 (bar profile) and the metered data (gray band).

typical elements of power systems in developing countries that can hin-
der a metering campaign. In our case, we carried out a metering cam-
paign by monitoring the meter at the connection of the school electric
system with the AES-SONEL distribution grid and we collected the com-
plete load profiles for 8 days with a 10 min time-step resolution.

The metered profiles are shown by Fig. 6, which reports, for each
time-step, the minimum, maximum and average values recorded. In
the metered days, the power peak ranges between 11.5 and 15.4 kW,

while the daily energy consumed ranges between 139.5 and 161.2 kWh.

Literature-based approaches vis-a-vis LoadProGen

As a first analysis, we formulated load profiles for the college by
means of the two literature-based approaches (Lit_Appr1 and
Lit_Appr2); while in a second step, we adopted the new procedure and
compared the results. It is worthwhile to mention that the input data
(Appendix) had been defined in order to embrace the uncertainty of
the collected information and hence all functioning windows and func-
tioning times comply with the condition of Ineq. 3. In applying
Lit_Appr1, each functioning window width has been reduced in order
to comply with Eq. (2) and hence the daily electric energy consumption
has not changed.

The resulting load profiles are reported in Figs. 7, 8,9 and 10 together
with key load profile parameters: daily electric energy consumption Eg,
power peak p; and load factor f;. Specifically, Fig. 7 shows the load pro-
file formulated with Lit_Appr1, Fig. 8 shows the load profile formulated
with Lit_Appr2, Figs. 9 and 10 show two examples of load profiles for-
mulated with LoadProGen with parameters Rh;;, Rw;; equal to 0% and
30%, respectively (from here, we refer to them as LoadProGen_0 and
LoadProGen_30).

Looking at the formulated load profiles,, some considerations can
be made. As regards Lit_Appr1 (Fig. 7), Eq. (2) leads to comply with
the power contribution of each appliance to the load profiles (i.e.
each and every appliance contributes with its own rate power P;;).
Nevertheless, when n;; appliances are available, they all result to be
on at the same time without considering any coincidence behavior.

Moreover, for appliances such as fridges, chiller and heaters, it is
quite difficult to set the functioning windows given their cyclical
on-off functioning. This approach suits users with different single
appliances or when functioning windows are exactly known. Out-
side these conditions, such as in the case under study, the resulting
profile often has a number of marked peaks (related to high power
rated appliances which work for short periods) together with
periods with constant power (related to low-medium power-rated
appliances which work for long periods).

As regards Lit_Appr2 (Fig. 8), Ineq. 3 leads to comply with the energy
contribution of each appliance. Nevertheless, the relating contribution
in term of power does not refer to the rate power of the appliance, but
it is reduced according to the ratio between functioning time and dura-
tion of functioning window(s). To put it in another way, each appliance
contributes to the profile not with its rate power, but with an average
(lower) one. This approach suits for users with a number of appliances
of the same type which work over wide functioning window(s) with re-
spect to the functioning time. The resulting profile, such as in the case
under study, often has lower power peaks and highest load factor (i.e.
the profile tends to be flat).

As regards the new procedure (Figs. 9 and 10), each and every appli-
ance contributes to the load profile with its own rate power. However,
the stochastic approach for defining the switching-on times allows to
simulate a realistic functioning of the appliances and hence to simulate
a realistic coincidence behavior. Moreover, the implementation of the
relationship between load factor, coincidence factor and number of
users has the objective to lead to proper user class peaks. This results
in profiles with continuous smaller and larger spikes, which follow
from the stochastic switching on of appliances; that is, the spikes values
are not random, but results from the features of the considered
appliances. Therefore, the model, considering the feature of having a
minute time-step, allows performing analyses of the logic to control
the energy fluxes among the different system components of an off-
grid system. Indeed, the extent of the variations of load between se-
quent time-steps are a significant element that affects the control capac-
ity of the system.
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Fig. 13. Comparison between LoadProGen_0 and the metered data (gray band).
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Fig. 14. Comparison between LoadProGen_30 and the metered data (gray band).

Comparing the resulting profiles of the new procedure, computed
with Rhy;, Rw;; equal to 0% and 30%, respectively, it can be noticed that
for the second case (Fig. 10): (i) the profile shape is smoother and less
blocky due to the random effect on functioning windows, (ii) the daily
electric energy consumption Ec is slightly smaller due to the random ef-
fect on functioning times and (iii) the power peak is smaller, but a new
secondary peak has appeared in the morning. It is worthwhile to men-
tion that while what is mentioned in point (i) always occurs when con-
sidering Rwj; different from zero, as regards points (ii) and (iii), the
resulting features of the profiles are peculiar to these specific profiles.
Indeed, the stochastic approach implemented in the new procedure
provides for the capability to formulate a number of realistic load pro-
files complying with the given in input dataset. This is not possible
with the two literature-based approaches which allow formulating
only one profile given a set of input data.

Metered profiles vis-a-vis literature-based approaches and LoadProGen

In order to quantify the performance of the proposed procedure, we
elaborated the box plot of Fig. 6 which reports, for each time-step, the
minimum, maximum and average values recorded. This representation
of the metered data is taken for comparison with the profiles formulated
via the literature-based approaches and the new procedure. In particu-
lar, we report the comparison between the box plot of the metered data
and the profiles formulated via the two literature-based approaches in
Figs. 11 and 12. It is worthwhile to stress again that the two literature-
based approaches each allow formulating a single load profile; hence,
the bar profiles reported in Figs. 11 and 12 represent a single profile.

When considering the new procedure, owing to its stochastic nature,
employing only a single estimated load profile is not appropriate. In this
case, we carry out the comparison of the metered data with the output
of n profiles formulated via LoadProGen where n is the number of pro-
files to be formulated in order that the relating average profile repre-
sents the profile to which the procedure converges. In particular, we
defined the following conditions to identify n:

where

= k refers to the profile time-steps, in this case, the considered load
profiles are constituted by averaged values over 10 min time-steps
in accord with the metered ones

= y(k)y refers to the average load profile value of n generated profiles
at the time-step k

= std|y(k),] refers to the average standard deviation of the load profile
value of n generated profiles at the time-step k

According to this approach, we evaluated load profiles to conver-
gence computed with Rhy;, Rwj; equal to 0% and 30%, respectively (i.e.
case LoadProGen_0 and LoadProGen_30). Key parameters of the load
profiles generated with LoadProGen to reach convergence are reported
in Table 6.

In Figs. 13 and 14, we compare the metered data with the box plots
resulting from the n profiles generated to convergence for the cases
LoadProGen_0 and LoadProGen_30. The box plots report, for each time-
step, the average values with standard deviation band obtained from
the n profiles.

Looking at the comparisons between metered and formulated pro-
files via the literature-based approaches and LoadProGen, some consid-
eration can be made.

Lit_Appr1 has led to a profile that fits well with the metered data only
at the high load power periods of the morning and evening (5-7 and
18-22). Nevertheless, it has lower values in the central part of the day
(7-18) as well as at night (22-5). Moreover, at least three peaks occur
which are clearly the effect of the inappropriate modeling of the coinci-
dence behavior of this approach. These peaks do not fit at all with the
figures of the metered profiles. Lit_Appr2 led to a profile that fits well
with the metered profiles from 5 to 22 despite its having slightly
lower values in the central part of the day (8-18). On the contrary, it
shows lower values in the night hours (22-5).

Clearly, when looking at the literature-based approaches, Lit_Appr2
is better suited for application in the design process of off-grid systems
for rural electrification. Indeed, despite safety parameters being consid-

?(k)n_—Y(k)nﬂ <0.25% fork=95%of time steps ered as regards the resulting peak power (which may be
y(k), underestimated), it avoids large overestimations of the power peaks if
v syl and (16)  compared with Lit_Appr1 and it better distributes the energy through-
std[y( ﬂ std[y(K)p. ] <0.25% for k>95%of time steps out the day (i.e. less blocky profile). Nevertheless, both Lit_Appr1 and
std [y (k),] Lit_Appr2 are deterministic approaches which are not capable of taking
Table 6
Key parameters for the set of profiles generated to convergence of the new procedure.
Ec [kWh/day] pr [kW] fi
n profiles to convergence - - -
min av. max min av. max min av. max
LoadProGen_0 231 140.2 14.4 15.7 175 0.33 0.37 0.41
LoadProGen_30 253 128.7 140.6 1514 136 15.7 176 0.33 0.37 0.43
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into account uncertainty about the input data and hence are not capable
of embracing the high uncertainty of users' electric consumptions in
rural areas.

LoadProGen, which is based on a stochastic mathematical procedure,
allows formulating a number of realistic load profiles within a given set
of input data. The analysis to convergence that was carried out with
LoadProGen has led to the consideration of a number of profiles that
are representative of their stochastic nature. In both cases, results fit
quite well with the on-field data: formulated samples properly reflect
the metered ones from 8 to 17, in the LoadProGen_0 case, the morning
peak occurs later; in both cases, there is a tendency to slightly overesti-
mate the peak bell in the evening, but the peak power is well
represented.

Besides, it is worthwhile to highlight that both LoadProGen and
Lit_Appr1 and Lit_Appr2, being based on input data coming from local
questionnaires and surveys, are strongly influenced by these input
data. That is, in the application case of load profile formulation, mistakes
in data collection provide for errors in the computed profile. This is
clearly the case of our applications during the night hours (22-5).
Most of the interviewed people probably forgot or have a wrong idea
of the functioning of some devices or wrongly translate their perception
as regards some devices into answers to the survey. Another option
could also be related to some illegal load connections or night loads
which were not reported by local people. This issue is also the main
cause for the amount of meted sampled data which do not fall in the
band provided by LoadProGen during night hours.

Comparing LoadProGen_0 and LoadProGen_30 cases on the basis of
the number of metered samples that fall within the standard deviation
band of the LoadProGen profiles from 5 to 22 show that 51.7% and
60.3% of the metered samples were, respectively, within the standard
deviation band. In our opinion, this is a fair result for the new mathe-
matical procedure; indeed, when analyzing the accuracy of the results,
one has to consider the specific features of the context under analysis.
The formulated profiles are the results of input data that have been col-
lected on the field by means of simple questionnaires and surveys in a
college campus from a rural town of Africa where people do not have
the same perception of the electric supply service that people of high-

income countries are used to. The local distribution grid suffers contin-
uous outages, the local back-up system is sometimes not available, and
hence, local users do not have constant typical habits in electrical appli-
ances usage.

Conclusions

In this paper, we have described a new mathematical procedure de-
voted to formulating daily load profiles for off-grid consumers in rural
areas of developing countries. We have implemented the new proce-
dure in a software tool (LoadProGen), which contributes to compensat-
ing for the lack of formalized methodologies to formulate load profiles
to be employed as input data in the capacity planning methods and en-
ergy fluxes control for off-grid systems for rural electrification. The new
procedure is based on input data that can be reasonably surveyed and/
or assumed in rural areas, and it is based on a stochastic bottom-up ap-
proach with correlations between load profile parameters in order to
build up the coincidence behavior of electrical appliances. We have pre-
sented the application of the procedure in the formulation of load pro-
files for a college in a small town in Cameroon and we have also
compared the resulting profiles with on-field metered data. Actually,
it is relevant to point out that the main purpose of this procedure was
not to forecast load profiles, but rather to properly formulate load pro-
files to support electrification studies in rural areas. Indeed, further
work based on this procedure should analyze the effects of load profile
uncertainty on the sizing of off-grid systems and should address opti-
mum stochastic sizing with regard to load profiles.
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Appendix
Table A1
Load data assumptions for the Presbyterian College in Bali.
Class type j N; App. name i P;j [W] Nij d;j [min] hij [min] WEij_1 hstart Rstop WEjj 2
Household _1 18 v 80 1 30 300 15:00 23:00 - -
Stereo set 36 1 30 300 6:00 20:00 - -
Ph. Chargers 5 3 30 180 0:00 24:00 - -
Indoor bulb 26 5 30 300 5:00 8:00 18:00 23:00
Outdoor bulb 26 1 30 180 18:00 23:00 - -
Security light 5 1 60 720 0:00 6:00 18:00 24:00
Fridge 40 1 10 480 0:00 24:00 - -
PC 50 1 60 180 15:00 22:00 - -
Iron 800 1 1 2 5:00 6:30 19:00 20:30
DVD 15 1 60 240 15:00 23:00 - -
Flask 700 1 2 2 5:00 6:30 - -
Blender 350 1 2 10 11:00 12:00 13:00 14:00
v 80 2 30 300 15:00 23:00 - 23:00
Radio 5 1 30 300 6:00 20:00 - -
Stereo set 50 1 30 300 6:00 20:00 - -
Ph. charger 5 2 30 180 0:00 24:00 - -
Household _2 14 Indoor bulb 26 4 30 300 5:00 8:00 18:00 23:00
Outdoor bulb 26 1 30 180 18:00 23:00 - -
Security light 26 1 60 720 0:00 6:00 18:00 24:00
Iron 800 1 1 2 5:00 6:30 19:00 20:30
DVD 15 1 60 240 15:00 23:00 - -
Ph. charger 5 2 30 180 0:00 24:00 - -
Household _3 11 v 85 1 30 240 16:00 23:00 - -
Indoor bulb 26 3 30 300 5:00 8:00 18:00 23:00
Dormitories 4 Lights 26 8 30 180 5:00 7:00 17:30 19:30
Tubes 36 8 30 180 5:00 7:00 17:30 19:30
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Table A1 (continued)

Class type j N; App. name i P [W] Njj d;j [min] hij [min] WEjj_1 hstart Rstop Weij 2
Safety lights 26 5 60 720 0:00 6:00 18:00 24:00
Bulbs 26 3 30 300 6:00 8:00 17:30 21:30
Tubes 36 1 30 300 6:00 8:00 17:30 21:30
Classrooms 14 Safety lights 30 1 60 720 0:00 6:00 18:00 24:00
Lights 26 6 30 690 5:30 20:00 - -
Radio 5 1 30 690 5:30 20:00 - -
Sharpener 50 1 2 20 5:30 11:00 - -
Kitchen 1 Fridge 53 2 10 600 0:00 24:00 - -
Bakery 1 Lights 26 4 60 600 5:30 16:30 - -
Bulbs 26 5 30 120 17:00 20:00 - -
Refectory 1 Tubes 36 9 30 120 17:00 20:00 - -
Bulbs 26 1 30 360 7:00 9:30 13:30 20:00
Tubes 10 1 30 360 7:00 9:30 13:30 20:00
Bulb 40 1 30 360 7:00 9:30 13:30 20:00
Canteen 1 Fridge 40 1 10 600 0:00 24:00 - -
Lights 26 1 60 1440 0:00 24:00 - -
Workshop 1 Radio 5 1 60 480 7:00 20:00 - -
Bulbs 26 1 30 420 8:00 12:00 16:00 21:30
Dispensary 1 Tubes 36 1 30 420 8:00 12:00 16:00 21:30
Bulbs 26 8 30 240 5:45 7:30 18:30 21:45
Church 1 Tubes 36 8 30 240 5:45 7:30 18:30 21:45
Bulbs 26 4 30 540 7:00 17:00 - -
Tubes 40 7 30 540 7:00 17:00 - -
Mini-tube 18 1 30 540 7:00 17:00 - -
Admin. Off. 1 Electronics 32 19 30 420 7:00 17:00 - -
Tubes 40 12 30 420 6:45 15:00 - -
Library 1 Photocopier 32 1 10 180 6:45 15:00 - -
ICT college 1 Bulbs 26 4 60 480 7:00 17:00 - -
Tubes 36 11 60 480 7:00 17:00 - -
Laptop 55 18 60 480 7:00 17:00 - -
Printer_1 550 4 5 90 7:00 17:00 - -
Printer_2 510 1 5 90 7:00 17:00 - -
Photocopy_1 1280 1 10 60 7:00 17:00 - -
Photocopy_2 1300 2 10 60 7:00 17:00 - -
Standby 35 1 480 480 7:00 17:00 - -
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