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access, making stand-alone photovoltaic (PV) systems an attractive solution in remote areas. Here, we analyze
the cost-effective electrification solution for Kenya comparing grid extension with stand-alone PV systems. We

use micro-data from a national household survey to estimate electricity demand for households that are within

reach of electricity infrastructure and to predict latent demand in unconnected households. These regional de-
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D12 mands are used in a spatially explicit supply model to seek for a least cost electrification solution. Our results sug-
53 gest that decentralized PV systems can make an important contribution in areas, with low demand and high
C61 connection costs. We find that up to 17% of the population can be reached cost-effectively by off-grid PV systems
013 till 2020.

(Rl;l; © 2015 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Keywords:

Electrification
Sub-Saharan Africa
Optimization model
Exponential model
Tobit model
Geographically explicit

Introduction

The achievement of the United Nations Millennium Development
goals is strongly associated with access to electricity. This is also
reflected in a recent declaration by the United Nations General Assem-
bly for the decade 2014-2024 as the Decade of Sustainable Energy for
All (United Nations General Assembly, 2011). In 2011, 45% of the
urban population and 82% of the rural population did not have access
to electricity in sub-Saharan Africa. The rate of electrification in Kenya
is currently below the average of sub-Saharan Africa. 81% of the house-
holds (42% in urban and 93% in rural areas) have no access to electricity
in their dwellings (Organisation for Economic Co-operation and Devel-
opment and International Energy Agency, 2013). Consequently a large
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majority of the population still relies on firewood for cooking and paraf-
fin for lighting (Kenya National Bureau of Statistics, 2005). Change is
slow, since incentives to invest in rural areas are low due to high con-
nection costs, low latent electricity demand and low incomes.

This article identifies least-cost options for electrification of house-
holds in Kenya. Many households cannot access electricity due to non-
availability of electric infrastructure and thus their demand is unknown.
For cost-effective planning of electricity infrastructure, which in many
developing countries involves a choice between grid extension and
the implementation of stand-alone systems, it is crucial to estimate
electricity demand. We use detailed micro-data from the Kenyan Inte-
grated Household Budget Survey (KIHBS) of 2005/2006 to estimate la-
tent demand for electricity in Kenyan households (Kenya National
Bureau of Statistics, 2005). In a second step, we use the demand
model to predict electricity demand for all districts of Kenya in the
year 2020. The data generated serves as an input into an electricity sup-
ply optimization model determining whether electric grid extension or
the implementation of off-grid photovoltaic systems is the cost-
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effective solution for each grid cell. We consider off-grid PV as being
representative for stand-alone systems, in general. The choice between
grid extension or off-grid supply is a longer term decision not taken by
individual households. By contrast, a national planning authority does
not need to decide on the specific option(s) for off-grid supply; this
can even be done at a household or community level.

This article contributes to recent scientific literature on electricity
planning for countries with low electrification rates. In particular, we
are interested in determining household electricity demand in areas
where electricity supply is currently not available and in assessing if
grid based supply or a combination of photovoltaic panels and batteries
are more cost-effective in covering demand. There exists a significant
body of literature on electricity demand estimation in developing coun-
tries. However, the literature on residential electricity demand in devel-
oping countries is more limited. Some examples of literature at the
household level describing factors determining fuel choice are the fol-
lowing: Davis (1998) analyzes a household survey in South Africa to
identify the effects of access to electricity of rural households on fuel
choice. Masera et al. (2000) use data from a case study in a Mexican
town and from a large-scale survey from four states of Mexico to find
a model describing the transition from traditional to modern fuels.
They show that a multiple fuel model or in other words the accumula-
tion of energy options describes this move better than the standard en-
ergy ladder model. Tatiétsé et al. (2002) evaluate households' actual
electricity energy needs in three Cameroonian cities. Their aim is to im-
prove distribution grid planning in order to prevent frequent network
interruptions and non-profitable investments. They form three classes
based on criteria such as socio-professional category, income level and
dwelling type. They carry out a survey collecting data on several charac-
teristics affecting electricity consumption. From data on household ap-
pliances they calculate load profiles. Filippini and Pachauri (2004)
estimate price and income elasticities of urban households' electricity
demand using disaggregate household level survey data for India. The
motivation of their research is to get an understanding of the key factors
that influence electricity demand at the household level. Pachauri
(2004) performs an econometric analysis using household survey data
from India and finds that household socio-economic, demographic, geo-
graphic, family and dwelling attributes influence the total household
energy demand. Ekholm et al. (2010) use a choice model to analyze
the determinants of fuel consumption choices for heterogeneous house-
hold groups in India incorporating factors such as preferences. Louw
et al. (2008) use sampled household data to assess the parameters af-
fecting the electricity usage in electrified households for South Africa.
Previous studies develop methodologies to explain energy consumption
in developing countries, but they are very limited for sub-Saharan
Africa. Moreover, none of the papers estimate currently uncovered elec-
tricity demand due to non-availability of supply. On research for elec-
tricity planning for countries with low electrification rates, until
recently, there have been only a few isolated studies comparing grid
connected versus stand-alone systems (Kaundinya et al., 2009; Narula
et al., 2012). Studies for sub-Saharan African countries are still very lim-
ited. Zvoleff et al. (2009) determine costs of rural electrification through
settlement patterns for several of the African Millennium Villages sites.
Kocaman et al. (2012) propose an algorithm to minimize overall elec-
tricity infrastructure costs based on spatial distributions of demand
points studying nine sites in sub-Saharan Africa. Szabé et al. (2011)
compare electrification costs of distributed solar and diesel generation
with grid extension for Africa through means of a cash flow model
and geographic information systems. Levin and Thomas (2012) deter-
mine the percentage of population for which decentralized systems
would be the cost-effective solution for 150 countries. They compare
the costs of centralized generation calculated via a minimum spanning
tree to decentralized generation. Fuso Nerini et al. (2014) undertake a
techno-economic analysis to determine the best electrification solutions
for the Amazon region in Brazil. They then evaluate those electrification
options in a multi-criteria-analysis based on weights obtained from an

interview process. Rosnes and Vennemo (2012) build an optimization
model to determine the least cost supply options covering demand in
43 sub-Saharan countries. Deichmann et al. (2011) and Parshall et al.
(2009) propose a geographically explicit methodology in order to de-
cide between stand-alone systems and grid electrification based on
cost minimization in Kenya. Kemausuor et al. (2014) uses a similar ap-
proach for Ghana. These models are strong on the engineering side, but
lack a detailed analysis and modeling of the demand side: Fuso Nerini
et al. (2014) use one average consumption of a ‘standard household'.
For new connections Rosnes and Vennemo (2012) use two average an-
nual consumption categories, one for rural households and one for
urban households. Levin and Thomas (2012) assume that newly electri-
fied regions will consume electricity at the same rate as the currently
electrified population. Deichmann et al. (2011) assume a fixed quantity
of electricity demanded for two categories of households: rural and
urban, whereas Parshall et al. (2009) propose four different exogenous
electricity demand values depending on income and population distri-
bution. Kemausuor et al. (2014) also use four average demand
categories.

The literature review shows that there is no study combining thor-
ough demand estimations with a supply side electrification model. Fur-
thermore, from the literature and to our knowledge our approach of
estimating latent electricity demand due to non-availability of electric-
ity supply is novel. Similar econometric approaches to latent demand
estimation have been applied in other sectors such as Briand et al.
(2010) for water in households but not to estimate electricity demand.
With this research we are attempting to close the gap of predicting elec-
tricity demand at a district level and using it in a supply-side cost opti-
mization model to choose between grid extension and stand-alone PV
systems.

The article is structured as follows. The Data and methodology sec-
tion provides data and methodology for the demand estimation and
the supply optimization model. In the Results section, we present the
results of both models. The Discussion and conclusions section provides
policy conclusions as well as an outlook on future research.

Data and methodology

Kenya with a geographical area of 569,250 km? is located in Eastern
Africa on the equator. The country is divided into eight provinces and 46
districts. The Kenyan Bureau of Statistics states a provisional number of
40.7 million inhabitants for 2012 (Kenyan Bureau of Statistics, 2013).
According to the KIHBS, the average population density varies depend-
ing on the district between 2.5 inhabitants per km? and 4500 inhabi-
tants per km?. One out of five Kenyans lives in urban areas (Kenya
National Bureau of Statistics, 2007). The public Kenyan Power and Light-
ing Company (KPLC) is responsible for transmission, distribution and
retail of electricity. About 80% of national electricity is generated by
the state owned Kenyan Electricity Generating Company (KenGen)
(Kenya Electricity Generating Company, 2014). KenGen sells the
electricity to the Kenyan Power and Lighting Company (KPLC) (Kenya
Electricity Generating Company, 2014). The total installed power gener-
ation capacity amounts to 770 MW of hydropower, 610 MW of thermal
energy, 200 MW of geothermal energy and 26 MW of cogeneration
(provisional numbers for 2012) (Kenya National Bureau of Statistics,
2014). In the Rural Electrification Master Plan (REM), the government
aims at an electrification rate of 33% until 2018 and 40% until 2020
(Ministry of Energy et al., 2009).

Fig. 1 gives an overview of the data and methodology that are de-
scribed in more detail in the Electricity demand estimation of Kenyan
households and Electricity supply optimization model sections. We
use an exponential regression model in order to predict electricity de-
mand for households without access to electricity. The predicted elec-
tricity demand in every grid cell (2000 km?) serves as an input
parameter in a supply-side optimization model, which determines the
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Fig. 1. Flowchart of the input data and methodology.

extension of the electricity grid and the introduction of stand-alone PV
by minimizing costs in every grid cell.

Electricity demand estimation of Kenyan households

We use the Kenyan Integrated Household budget survey (KIHBS)
data (Kenya National Bureau of Statistics, 2005), which is the best na-
tionally representative data available to study the current patterns of
household electricity demand. There are some caveats with the use of
the data, but the survey data was systematically examined, manually
corrected for outliers, and checked for logical inconsistencies wherever
possible to eliminate measurements errors. We dropped one observa-
tion where electricity demand was not available, two observations
where electricity consumption was zero, but which reported electricity
expenses, and three observations where the head of the household was
younger than 16 years. The same dataset was previously used by Lay
et al. (2013) to study the determinants of Kenyan households' choices
of lighting fuels. The stratified sample consists of 13,340 households
surveyed between 2005 and 2006 and contains the sampling selection
probabilities for each household. One of the 21 modules of the question-
naire is designed to give information on household energy use. For our
descriptive analysis, we distinguish households by rural and urban ex-
penditure quintiles and assess differences in electricity access and de-
mand among these groups.

Early studies on electricity demand estimation in western countries
primarily focused on estimating electricity from equipment stocks
(Berndt, 1991). The situation in developing countries differs, because
many households are not connected to the grid and consequently do
not own electric appliances. Several approaches are possible to estimate
latent electricity demand of households which may get connected to the
grid. From a statistical point of view, a randomized experiment or
matching would be the most desirable. However, this requires data be-
fore and after the introduction of electricity supply (Rosenbaum, 2010).
From an economic point of view, a full household model including labor
and goods market is also appealing (Bardhan and Udry, 1999). Howev-
er, data limitations and underidentification of such a system of equa-
tions often require strong assumptions, which are hard to justify
(Angrist and Pischke, 2010). We take a microeconometric approach,
for estimating demand, which is suited for cases where a large share
of households has zero demand (Wooldridge, 2010).

The Kenyan household survey data contains information that allows
us to distinguish areas where the electricity grid is available within
100 m of a household to other areas where electricity infrastructure is
missing. When estimating electricity demand we run the regression
only using data for households within 100 m of an electricity supply.
The rationale is that only these households potentially have access to
electricity, i.e. they can choose to use electricity from the grid. This is im-
portant information in the regression model to estimate which house-
holds actually do consume electricity, depending on their household
characteristics. There are a large proportion of households that do not
consume electricity although they are within 100 m of the electric
grid. Including households that don't have the option to consume elec-
tricity at all, as they are beyond this distance to the grid, would change
our results significantly. Moreover, the results would be incorrect as
these households do not have the option to consume grid electricity, in-
dependent of their household characteristics, as they are not able to
connect to the grid. The two sub-sets of households differ significantly
with respect to expenditures, servants, flush toilets, age of household
head, formal education, number of people living in the house, and the
share of rural households. We control for these variables in the regres-
sion model. We exclude the main cities Nairobi and Mombasa from
our econometric estimation. These being the two major Kenyan cities,
with higher electricity supply, we assume that households located in
these two cities are structurally too different to be used to predict elec-
tricity demand for households outside of them. These are also the only
two districts of Kenya which are entirely urban and thus compared to
the rest of the country have very low rates of people employed in agri-
culture (1.3% and 1.1% of households in Mombasa and Nairobi com-
pared to 68.8% of all households in Kenya). The industrial and
commercial activities are consequently higher and the main economic
sector in these cities is wholesale/retail/trade (Kenya National Bureau
of Statistics, 2007; Knight Frank, 2014). Education is more accessible
proven by the high percentage of population being able to read and
write as well as the number of children attending school and the low
distance to the nearest public primary school (Kenya National Bureau
of Statistics, 2007). Nairobi and Mombasa attract a high proportion of
national and international, wealthy, high-income inhabitants and tour-
ism is strong (Kenya's Ministry of East African Affairs, Commerce and
Tourism, Department of Tourism, 2010). House prices are much higher
and in the high segment comparable to other global cities (Knight Frank,
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2014). Nairobi and Mombasa, differently to the rest of the country have
a higher proportion of households renting, thus spending a large
amount of their non-food expenditures on rent (Kenya National Bureau
of Statistics, 2007). Infrastructure such as pipes for drinking water pro-
vision, sanitation and flush toilets, electricity, roads, public transport
(buses, railway), healthcare is much better developed (Kenya National
Bureau of Statistics, 2007; The World Bank, 2014).

Electricity demand of connected households mainly depends on, ac-
cording to microeconomic theory, income, prices, and preferences of the
household (Louw et al., 2008). Household's preferences for electricity
differ depending on location (urban or rural) and the number and struc-
ture of household members (e.g. family member size, age, education).
Income is notoriously difficult to measure in developing countries and
expenditure is often preferred (Deaton, 1995). We use non-food expen-
ditures and the number of domestic servants employed in the
household as a proxy for income. Non-food expenditures are trans-
formed applying an inverse hyperbolic sine (ihs) transformation
ihs(y;) = log(y; + (y? + 1)°2), instead of a simple logarithmic transfor-
mation since log(0) = —inf. We exclude food expenditures as some
households grow their own food. The existence of a flush toilet can
serve as indication of income and infrastructure availability and is there-
fore included in the model. Energy prices are not included in the model
as they do not vary across regions (for electricity). We also exclude
prices of substitutes and complements of electricity as no region specific
data are available. In describing household preferences, we include
age and education of the household head, the number of people liv-
ing in the household, and whether the household lives in an urban
or rural area (representing all characteristic being typical for rural
households but can not be measured). We do not include regional
dummies, because we have only a dozen observations in some of the
provinces.

Generally, households have a non-negative electricity demand. Since
a standard ordinary least square model can result in negative fitted
values, Tobit models are frequently used in situations with limited out-
comes (Tobin, 1958). In the Tobit model, under the assumption of nor-
mally distributed and homogeneous errors, censoring at zero demand is
accounted for. The assumptions of normally distributed and homoge-
neous errors are often not fulfilled in the Tobit model. To model multiple
step household decisions, the standard Tobit model has been extended
to a class of multi-hurdle models (Wooldridge, 2010). Cragg's model
(Cragg, 1971) is the most basic one which separates the consumption
decision in two steps. The two estimation steps can be correlated in
more recent variants (Blundell and Meghir, 1987). While these models
are theoretically appealing, they rest on assumptions of normal and ho-
mogenous errors. Multi-hurdle models consist of several, possibly cor-
related equations such that non-convergence of the objective function
is a frequent problem. The censored least absolute deviation method
by Powell (1984) is used to avoid the strict distributional assumption
of hurdle models. However, they often suffer from non-convergence in
case of a large share of censored observations. A more direct approach
is the prior transformation of the variables to fulfill the assumption of
non-negative outcomes. Wooldridge (2010) suggests an exponential
model of the type y; = exp(bX;) + u;. This exponential model can be es-
timated with a non-linear regression routine which results in strictly
positive expected values. We estimate both an exponential and a Tobit
model to allow for a comparison of the results.

The estimated equation for the Tobit model can formally be
expressed as

_ [Ed; if Ed;>0
Ed; ‘{ 0 if Ed; <0

where

Ed; = by + byEX; + byS; + b3 F; + byA; + bsE; + bgN; + b,R; +u;. (1)

The estimated equation for the exponential model can formally be
expressed as

Ed; = exp(by + byEx; + b,S; + b3 F; + bsA; + bsE; + bgN; + b;R;) + u;.
@)

The variable abbreviations in both models represent:

Ed?t Latent monthly electricity demand per household in kW h
Ed; Monthly electricity demand per household in kW h

Ex; Non-food expenditures per household in KSh per month

S; Number of servants employed in the household

F; Flush toilet as main toilet facility

A Age of household head in years

E; Formal education of the household head in years

N; Number of people living in the household

R; Dummy equal 1 if household is in a rural area of household i
bo, ..., b; Regression coefficients

After estimation of the coefficients, we use the exponential equation
to predict future demand. The survey data are from 2005/06, but invest-
ment decisions have to be based on future demand. We therefore pre-
dict demand in 2020, which serves as our projection horizon. We
inform our estimation of future demands in 2020 by employing GDP
(rural, urban), population (rural, urban), and share of educated popula-
tion (over 15 years of age) projections from the International Institute
for Applied Systems Analysis (IIASA) (K.C. et al., 2010; Riahi et al.,
2012). While similar projections are available from other sources, such
as the World Bank and United Nations, projections for all the variables
of interest are not available from a single source, in a consistent manner.
The data projected for the year 2020 can be found in Table 1. We base
the predictions for 2020 on non-food expenditures from 2005/06 mul-
tiplied by the change in GDP (differentiated between urban and rural)
and the education level of 2005/06 multiplied by the change in educa-
tion. We then predict demand based on these variables and multiply
the predictions by the population growth (differentiated between
urban and rural). As the KIHBS provides the location of each household
at the district level, the projections result in mean demand per district.
Knowing in which district each grid cell is located, and multiplying the
number of households in each grid cell with the mean demand allows
us to estimate the total electricity demand in each grid cell.

The strength of the model we use lies in utilizing the distinction be-
tween those who could consume electricity (because they lie within
100 m of an electric connection), but do not to estimate the latent de-
mand for electricity. This is an important differentiation, which has
not been considered previously. Other models, like equipment stock
based models or Almost Ideal Demand Models are more appropriate
in other situation (if the households are connected already) or if other
variables are available (e.g. region specific price data). For the purpose
of estimating demand as input for the optimization model and the
data available (one year cross-section survey and national population
and economic forecasts) we consider the model as the best choice.

Table 1
Data for 2005 and projections for 2020.
Unit 2005 2020
GDP Billion USD 18.769 32.324
GDP urban Billion USD 12.361 22.607
GDP rural Billion USD 6.408 9.717
Education level of the population older Years 7.76 943
than 15 years

Population Million 35.817 52.034
Population urban Million 7.429 13.826
Population rural Million 28.387 38.208
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The exponential model is estimated with the function “nls” from the
“stats” package (version 2.14.2) and the Tobit model with the function
“mhurdle” (Carlevaro et al., 2011) of the statistical programming envi-
ronment R (R Development Core Team, 2012). Weighted means are cal-
culated with the R package “weights”, version 0.70 (Pasek, 2011).

Electricity supply optimization model

In the optimization model we find the cost optimal electrification so-
lution between stand-alone PV and grid extension for every grid cell of
2000 km?. The aim of the model is to find the cheapest solution to cover
demand for those households that currently cannot access electricity
due to non-availability of electric infrastructure. One of the constraints
of the model is that supply needs to satisfy all demand. The model
does not endogenously decide which areas are more important to elec-
trify. The model only chooses between on-grid and off-grid stand-alone
PV as a solution to satisfy electricity demand for each grid cell based on
cost alone. We assume that all regions are given the same priority in sat-
isfying the latent demand of households.

Initially, we aimed at including all options which are currently being
employed in Kenya for household electrification in the analysis. In addi-
tion to the grid and solar options included in the model, diesel genera-
tion is the only other option that is used widely. Compared to other
technology options (e.g. micro-hydro and wind) for which reliable
data is lacking (Szabé et al., 2011); PV and diesel generation costs are
well understood and the technologies can be implemented in any part
of the country (Parshall et al., 2009). Spatially differentiated costs of die-
sel are unavailable for Kenya. To acquire meaningful results good data
on spatially differentiated diesel cost (depending on the transport dis-
tance) would have been necessary as fuel consumption represents the
major share of costs for these systems (Szabé et al., 2011). A test run
confirmed little difference in the results for PV and diesel options. This
conclusion is in line with other studies for Kenya on PV economics by
Ondraczek (2014) and Szab6 et al. (2011). We use off-grid PV as being
representative for stand-alone options in the model. The choice be-
tween grid extension and stand-alone systems for the electrification of
a grid cell requires a long-term plan, whereas the choice between PV
and another stand-alone option can be taken by the individual house-
hold or community. An estimation of the relative cost competitiveness
of diesel and PV stand-alone systems for a certain set of assumptions
on costs and interest rate is included in the Appendix A.2 to illustrate
the relative competitiveness between these two off-grid options in
Kenya.

To illustrate the assumed and prevailing conditions, Fig. 2 shows a
map of Kenya including the grid cells, the current electricity grid and ad-
ministrative boundaries. The key data for the model are costs of the
technologies and data on variables which influence costs per kW h
such as population distribution, solar irradiation and PV efficiency.

Table 2 shows the input parameters together with their values and
sources. A more detailed description can be found in the Appendix A.1.

Indices:

i = supply cells

j = demand cells

aligs: j = j' = j?

The investments are annualized by applying an interest rate of 6% to
initial investment costs. PV prices are expected to stay stable in the fu-
ture (Bazilian et al., 2013). We thus take prices from the IEA-ETSAP
technology brief of 2013 (IEA-ETSAP and IRENA, 2013) for the 2020 sce-
nario. Module prices fell to USD 950 per kW (IEA-ETSAP and IRENA,
2013). This results in costs of USD 119/per m? assuming that 1 kWp re-
quires 8 m? of rooftop area. Cost projections for batteries are scarce or
unavailable (IEA-ETSAP and IRENA, 2012). We thus use the same costs
from the baseline scenario for 2020. According to the Kenyan Ministry
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Fig. 2. Map of Kenya showing the grid cells, the districts, and the existing electricity grid.

of Energy future energy generation costs will stabilize at around
USD 0.17/kW h in 2018 (Ministry of Energy et al., 2009).

The following paragraphs describe the optimization model in more
detail:

Positive variables:

x;; = amount of grid electricity transported from i to j, where
x;; = 0 for all i, j (kW h per year)

s; = size of solar panel areawhere s; > 0 for all j (m?)
u; = grid electricity used in grid cell where u; > 0 for all j (kW h
per year).

Binary variable:

w;; = investment in power transmission line from i to j where
W,‘J’ = 0, 1.

The optimization model minimizes the following objective function:
. t
Min Zj(ce+cj) * u]-+Zc wdijx Wi+ Cx sy 3)
ij

Total costs are composed of (i) the sum of the grid electricity price c®
and the distribution charge ¢; multiplied with the amount of grid elec-
tricity u; consumed in a certain grid cell j, (ii) the costs for building the
transmission grid between different cells which are determined by
grid construction costs per kilometer ¢!, the distance between grid
cells d;; and the binary variable w;; indicating if a certain grid connection
is built, and (iii) the costs of a solar panel ¢ multiplied by the solar panel
area s;. Total costs are thus composed of electricity grid distribution
costs, electricity grid transportation costs and solar panel costs.
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Parameters of the optimization model: values and sources.

Model parameters

Value

Source

d;j = distance between cells i and cells j (meters)
p; = maximum solar panel area in cells j (m?)
bj = demand for electricity in cells
J (KW h per year)
¢' = costs of building of power transmission
lines (USD per meter)
¢; = distribution charge in cells j (USD per kW h)

g = grid capacity (kW)

a; = supply of conventional electricity in cells
i (kW h)
¢® = energy generation costs (USD per kW h)
¢ = solar power installation costs in cells
i (USD per m?)

ij = solar irradiation in cells j (kW h/m?/a)

Depending on the cells
2000 km?
Per household on average

USD 157,470 km™~ ! on average

Reference costs: USD 0.1027 kW h™!

Distribution charge: 1% increase in population density
leads to 0.6% decrease in distribution costs

733GWh

9999 GW h

USD 0.13 kW h™!

USD 250 m™~2 of modules USD 250 for a 60 watt battery
USD 100 for additional equipment

The solar irradiation varies spatially and thus the yearly
output is different for each grid cell.

Own calculations using ArcGIS

Own assumption

Own model using micro-data of the KIHBS Kenya National
Bureau of Statistics (2005)

Kenyan Power and Lighting Company (2010) (Appendix
AlL1)

Reference costs: Ministry of Energy et al. (2009)
Distribution charge: Filippini et al. (2004) (Appendix A1.1)

Own calculation based on 5 times maximum demand of
grid cells
Own assumption

Ministry of Energy et al. (2009) (Appendix A1.2)
Wholesale Solar, n.d.; Sollatek Electronics Kenya Limited,
n.d.; Center for Alternative Technologies, n.d.; Solarlink,
n.d. (Appendix A1.3)

Data from Rigollier et al. (2004), grid cell output
calculated by the authors (Appendix A1.4)

Depending on the cell, 2007 kW h m~2 and year on

average

¢ = solar efficiency (%) 12.8%

Population Density — determines total demand 45 per km~2 on average

in the grid cell

Own calculation based on Eejectric® = Hsolar” * finclination® *
FSotarcelis” * leet® * PR” (Appendix A1.5)

Center for International Earth Science Information
Network (CIESIN), Columbia University et al. (2004)
(Appendix A1.6)

Produced energy per year in kW h/year.

Mean sum of the yearly radiation energy in kW h/year.
Inclination factor.

Area of the solar cells.

Module efficiency.

Performance ratio.

- e a n o

The following constraints have been defined in the model: Demand
for electricity has to be fulfilled in all grid cells which is ensured by

S e i sz bV (4)
1

requiring that the amount of grid electricity u; and the amount of locally
available PV electricity ¢/ « i; « 5; is greater than demand b;.
The grid electricity used in a grid cell u; and the grid electricity trans-
ferred to other grid cells Zx,— j has to be lower than the amount of grid
1

electricity produced in the grid cell a; and the amount of grid electricity
transferred to the grid cell from other cells D _ xy,;. PV electricity cannot
h

be transferred to other grid cells.

U+ X<+ G+ X,V i (5)
i h
The following equation ensures that a transmission line w;; of capacity g

is in place if electricity is transferred from one grid cell to another:

xi,j < Wi,j * g A4 i, J (6)

Finally, the size of the solar panel area that may be deployed is
constrained by the maximum solar panel area:

5, <p; @)
The model is implemented in the General Algebraic Modeling Sys-

tem (GAMS) (GAMS Development Corporation, 2009) using the solver
CPLEX.

Results
Electricity demand estimation

Patterns of household electricity use

We briefly describe consumption patterns using data from the
Kenyan Integrated Household Budget Survey (KIHBS). From the survey
itis evident that there are households which are connected to an electric
grid, but do not consume any electricity. According to the KIHBS, 17.7%
of the total households have access to electricity in their household;
43.8%in urban and 3.5% in rural areas. However, only 7.2% of households
report consumption greater than zero, 21.7% in urban areas and 2.3% in
rural areas. Furthermore, 35% of households are reported to live within
100 m of an electricity grid. Contrary to these figures, in 2005/2006 the
Kenyan Power and Lighting Company (KPLC) had 660,200 household
costumers, or 9% of households were connected to the electricity grid.
In the KIHBS, 10% of the households do not name KPLC as their main
supplier of electricity but other systems such as community generators,
solar panels, own generators or a car/motorcycle battery. This explains
only a small part of the divergence in access estimates between the
KPLC and KIHBS. The rest of these households might be unofficially con-
nected through their neighbors to the national grid. The fact that the
consumed amount of electricity stated by KPLC is higher than the con-
sumed amount estimated from people having a positive electricity bill,
as derived from the KIHBS, strengthens this argument: According to
KPLC, total sales to domestic customers in 2005/2006 amounted to
1028 GW h. Weighted sum from the KIHBS data (2005/2006) results
in an electricity demand estimate of 806 GW h for all of Kenya. This
means that according to the KIHBS estimate household electricity de-
mand for Kenya is 222 GW h lower than the official numbers given by
the KPLC. When excluding Nairobi (422 GW h), the difference in house-
hold electricity demand between the KIHBS and the KPLC is lower; the
KIHBS shows a demand which is 22 GW h higher than the numbers
given by the KPLC (as KPLC does not report Mombasa data separately,
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Fig. 3. Percentage of electrified households and households consuming electricity.

we deviate from other parts of the paper and only excluded Nairobi
here). Fig. 3 illustrates the estimated number of households with access
to electricity for each income quintile using KIHBS data. The figure also
shows the difference between the percentage of households that state
they have an electricity connection in the household and the percentage
of households with electricity consumption (meaning electricity use
greater than zero). The difference can be explained by households hav-
ing a connection but not being able to afford to consume during the pre-
vious month, power outages or households which use electricity but are
not billed as they are not officially connected. In the richest quintile,
nearly half of all households are connected to electricity, compared to
close to 0% among poor households. The percentage of connected

Table 3

households largely exceeds the percentage of households consuming.
Further, the rate of electrification in all quintiles is much higher in
urban areas. Only about 50% of the electrified households also consume
electricity.

Econometric model

The mean value of electricity demand amounts to 9.63 kw H per
month in our sample. A list of the key independent variables included
in the model as described by Eq. (1) and (2) are included in Table 3.
Table 3 also shows the difference in the sample-weighted (according
to KIHBS weights) mean for the regression variables between house-
holds located within and outside 100 m of an electricity supply. The dif-
ferences in the means across the two population sub-groups are
significant for the variables included in the model.

Table 4 shows the results from the weighted exponential and Tobit
regression. Out of the 4084 observations, 152 have been deleted due
to missing explanatory variables. Common goodness of fit measures
are not applicable for non-linear regressions models. For the Tobit
model the pseudo (or McFadden) R? is 0.55. In both models, all house-
hold characteristics used to explain electricity demand are significant
at the 1% level.

The coefficient of an exponential model can be interpreted as the rel-
ative change in mean electricity demand when the explanatory variable
changes by one unit. The coefficient of the inverse hyperbolic sine trans-
formed variable can be interpreted as elasticity. The elasticity of non-
food expenditures is 0.57, i.e. households with 1% higher expenditures
for non-food goods have 0.57% higher expenditures for electricity. The
second proxy for income, the number of servants, is positive and attri-
butes a 44% higher electricity demand to households with a servant.
Similarly, households with a flushing toilet have 39% higher electricity
demand. The characteristics of the household head influences the elec-
tricity demand: if the head is one year older, electricity demand is on av-
erage 2% higher and per additional year of formal education demand

Weighted mean regression variables for households within and beyond 100 m of an electricity supply.

Weighted mean of household

Within 100 m of electricity supply

Beyond 100 m of electricity supply

Non-food expenditures per household in KSh per month 1526.63 517.45 o
Number of servants employed in the household 0.13 0.07 o
Flush toilet as main toilet facility in % 14.83 0.67 *
Age of household head in years 42.18 47.66 o
Formal education of household head in years 8.48 543 o
Number of people living in the household 433 5.61 *
Households in rural area in % 58.17 96.44 *
Note: ** indicates difference in means significant on a 5% level.
Table 4
Results of the exponential regression and the Tobit regression.
Explained variable: electricity demand (kW h per month)  Estimated Standard error  Level of Estimated Standard error ~ Level of Mean marginal
coefficient significance  coefficient significance  effects
Exponential model Tobit model
Intercept —3.21 0.24 o —884.97 47.18 o —189.40
Inverse hyperbolic sine non-food expenditures per 0.57 0.02 o 58.63 5.20 o 12.68
person in KSh per month
Number of servants employed in the household 045 0.025 o 35.28 8.79 e 7.08
Flush toilet as main toilet facility 0.39 0.06 o 123.85 10.81 o 27.47
Age of household head in years 0.021 0.00 e 2.36 0.37 o 0.54
Formal education of household head in years 0.03 0.01 o 8.46 1.20 e 1.78
Number of people living in the household 0.10 0.01 o 14.77 1.96 o 3.06
Household in rural area (yes = 1) —0.63 0.09 o —69.39 1231 e —11.32
Sigma NA NA 190.46 5.08 o
Observations 4084 4084
Pseudo R? 0.55

Note: ***, and*** indicate significance on a 10, 5, and 1% significance level.
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increases by 3%. An additional member in the household increases elec-
tricity demand by 10%. The mean electricity demand in rural households
is estimated to be 63% lower than the electricity demand of urban
households. The coefficients of the Tobit model indicate the marginal ef-
fects of the latent variable. The marginal effect can be calculated either
for connected or for all households. In this context, we report the mar-
ginal effect of the actual electricity demand, i.e. the electricity demand
of connected households (Long, 1997). Households with 1% higher ex-
penditures for non-food goods have on average 0.12 kW h higher elec-
tricity demand. Households which employ an additional servant have
an electricity demand 7.1 kW h higher and those which possess a flush-
ing toilet 27.5 kW h higher, on average. Our income proxies thus sub-
stantially influence electricity demand. The characteristics of the
household's head also influences the electricity demand: an additional

Baringo
Bondo

Buret

year of age is correlated with an increased demand of on average
0.5 kW h and an additional year of formal education by 1.8 kW h. Finally,
an additional household member increases demand by 3.06 kW h. The
mean marginal effect of the dummy variable for rural households im-
plies that rural households have a 11.3 kW h lower electricity demand
than urban households on average.

Fig. 4 shows the predicted mean household demand from the re-
gression, the observed weighted mean demand for all electrified house-
holds as well as all households from the KIHBS. The observed mean
electricity demand from KIHBS data is distributed among the districts,
ranging between 0.1 kW h and 65 kW h per household and month.
The observed mean demand for electrified households ranges between
17 kW h and 342 kW h. The predicted mean demand calculated from
the regression model ranges between 14 kW h and 156 kW h per

Butere/Mum.
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Fig. 4. Predicted mean household electricity demand, observed mean household electricity demand for electrified household and observed mean household electricity demand for all

households for each district.
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Fig. 5. Mean yearly household electricity demand per demand quintile.

household and month. The difference between the predicted and ob-
served electricity demand can be explained by the difference in house-
hold characteristics of the newly electrified households.

Fig. 5 shows the predicted mean electricity demand of the districts
on a map. We grouped districts by quintile of electricity demand rang-
ing from lowest to highest. Predicted electricity demand is highest in
Central-South and South-West Kenya. The lowest predicted mean elec-
tricity demand per household is in the North of Kenya.

Table 5 shows the mean values for the dependent and the indepen-
dent regression variables using the same demand quintiles as in Fig. 5.
Quintile 1 has the lowest value for the following variables: current elec-
tricity demand per household, non-food expenditures, percentage of
households with a flush toilet and the educational level of the house-
hold head. It has the largest mean household size and the highest per-
centage of households located in rural areas. Quintile 5 shows the
highest mean values for the following variables: current electricity de-
mand per household, non-food expenditures, number of servants and
percentage of households with a flush toilet. Quintile 5 has the lowest
percentage of households living in a rural area.

Table 6 shows the household electricity demand in 2005/2006 ac-
cording to KPLC and KIHBS (a more detailed description can be found
under 3.1.1) and the predicted values for 2020.

Table 5
Mean values for the regression variables per demand quintile.

Quintile Ed; EX; S; Fiin% A; E; N;

3.37 538  0.07 0.01 4438 438 5.61 0.75
6.83 6.52 006  0.05 45.17 8.08 475 0.69
6.95 6.48  0.12 0.05 45.83 7.11 484 073
5.86 6.43 0.08 0.08 4538 6.58 539  0.69
7.28 6.83 0.13 0.14 43.35 6.92 502  0.59

Ri in%

v W=

Table 6
Real and predicted household electricity demand in 2005/2006 and in 2020 in GW h.

Total household electricity ~Household electricity
demand in Kenya demand excluding Nairobi

2005/2006 2005/2006 2020
KPLC 1028 362
KIHBS 806 384
Predicted exponential 673 1483
Predicted Tobit 615 1432

The predicted annual demand in the exponential model amounts to
673 GW h and to 615 GW h in the Tobit model. The assumptions of nor-
mal and homogenous errors are not fulfilled in the Tobit model. There-
fore, we use the predictions of the exponential model as an input into
the optimization model.

Electricity demand from the KIHBS is 289 GW h lower than the pre-
dicted demand resulting from the exponential model. In other words, if
all Kenyan residents were located within 100 m of an electricity grid the
demand would amount to 673 GW h according to the prediction of our
model. The difference of 289 GW h represents latent electricity demand.
By 2020, annual demand would approximately double from 673 GW h
in the exponential model and 615 GW h in the Tobit model to
1483 GW h in the exponential and 1432 GW h in the Tobit model, as-
suming growth in population, income, and education levels as outlined
in the Electricity demand estimation of Kenyan households section.

Electricity supply side optimization model

Results of the optimization model show that for most grid cells PV
electricity is the most cost-efficient electrification option for the year
2005/2006 (illustrated in Fig. 6). The demand covered with electricity
produced by stand-alone PV amounts to only 15% of the total electricity
consumption, 22% of the households but 80% of the grid cells.

For the 2020 scenario the changes in parameters (increase in de-
mand, decrease in PV costs and increase in electricity generation

— Current electricity grid

. |Available grid electricity

Extended grid electricity L

PV electricity

Fig. 6. Result of the optimization model.
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Table 7
Mean values in cells supplied with grid and PV electricity.
Cells with grid Cells with PV
electricity electricity
Mean number of households per grid cell 72,110 4152
Mean number of members per household 5.1 5.7
Mean monthly electricity demand per 73 47
household (kW h)
Mean total demand per grid cell (KW h) 4,334,594 240,780
Mean solar irradiation (W h m~2 days™"') 1341 1407

costs) cancel each other. However, if we only increase electricity de-
mand to 2020 values and keep all other parameters the same, six
more grid cells are supplied with grid electricity compared to the sce-
nario for the year 2006. In that case demand covered with electricity
produced by stand-alone PV amounts to only 11% of the total electricity
consumption, 17% of the households but 78% of the grid cells.

Differences between PV and grid electricity cells

Cells supplied with PV electricity have larger distances from the grid
and lower demand than cells for which grid electricity is chosen as an
optimal solution. Table 7 illustrates that the mean number of house-
holds, the mean monthly electricity demand per household, and the
mean total demand per cell is lower for districts supplied with PV elec-
tricity than without PV electricity. The cells supplied with PV electricity
show a slightly higher mean solar irradiation.

Costs

In the optimal solution of the baseline scenario transmission costs
amount to USD 6.65 million and distribution cost to USD 82.78 million
per year. Together they account for 77% of the total system costs. Total
PV costs are USD 25.98 per year. In the optimal solution of the baseline
scenario, costs for PV electricity amount to USD 0.243 per kW h and
USD 0.143 per kW h for grid electricity.

Sensitivity analysis

In a sensitivity analysis for the baseline scenario (illustrated in
Fig. 7), we analyze how a change in input parameters affects the share
of PV in total electricity consumption. We vary the parameters within
a range of 50%. The model shows that increasing electricity demand,
solar panel costs and decreasing PV efficiency, electricity price and
grid extension costs results in more districts selecting PV electricity as
the cost optimal solution. Ceteris paribus, a 50% lower electricity de-
mand increases the demand covered with electricity from PV from
15% to 21%. An increase in electricity demand by 50%, leads to 13% of
the total demand then being supplied by PV electricity. A 50% change
in PV efficiency leads to 7% (less efficient PV) and 27% (more efficient)
of the demand being supplied by PV electricity. A change in solar
panel costs has the largest effect. The share of PV electricity increases

to over 45% from a cost drop of more than 50%. Solar panel cost increases
have a smaller impact: an increase of costs by 50% reduces PV supply to
9% of total electricity demand. A variation in energy price by 50% leads to
23% or 11% of the electricity supplied by PV, depending on arise or fall. A
bidirectional change in grid extension cost by 50% results in 18% for
higher and 11% for lower electricity grid costs of electricity demand cov-
ered with PV electricity.

Discussion and conclusions

Major efforts and investments into its electricity infrastructure are
essential in order to meet the Millennium Development Goals in
Kenya. Two alternatives are available to meet this basic demand, either
through the extension of the national grid or through supply with
stand-alone systems. The latter option is particularly important for
rural households, but might also only serve as an interim solution for
certain areas where grid extension will be the more cost effective solu-
tion in the future. The model results serve as a guideline for which re-
gions of the country grid extension is more economic and where it is
likely to be more beneficial to concentrate on the implementation of
the stand-alone option. We find that under current circumstances the
implementation of stand-alone PV systems is the more cost-effective
solution for a majority of the rural area with low population density.
This finding is in line with Ondraczek (2014) who comes to the conclu-
sion that PV is already a viable energy option for off-grid applications in
Kenya. Today, and even in the near future, grid electricity is a choice
mainly for districts located around the existing electricity grid with
high per household demand and population density. This is mainly
due to low demand and low population density in a large part of the
country. It may be favorable in the short-term to focus on off-grid solu-
tions to provide people with basic electricity to meet lighting demands
and power small appliances. Depending on future cost developments,
only in the longer term is grid electricity likely to serve as an affordable
solution for remote areas. Our results highlight the importance of ac-
counting for region specific features in electrification planning. Results
show that it can be advantageous for planning to consider and adapt
to technological developments. For instance the sensitivity analysis sug-
gests that improvements in PV efficiency and panel price reductions
have a large effect on the optimal solution. Further development of
the PV market in Kenya could be accompanied by a lowering of costs
due to external factors, but also to learning effects in the local market
of installing PV systems and improvements in design, performance
and capacities of such systems. Our conclusions are quite contrary to
those of Parshall et al. (2009). They show that grid extension is the
cheaper option for most areas of Kenya and the choice is mainly de-
pending on geographic features. Deichmann et al. (2011) conclude
that first stand-alone renewable energy technologies represent the
cheapest option for a significant minority in rural and remote areas
but not in densely populated areas. This comes closer to our results.
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Fig. 7. Change in parameter values and effect on the share of PV electricity on total electricity consumption in the baseline scenario.
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The difference in results can be explained by the use of different values:
Parshall et al. (2009) use four different demand categories, from be-
tween 30 kW h per household and month for the sparsely populated/
poor to 150 kW h for the densely populated/rich. Deichmann et al.
(2011) use a fixed demand of 120 kW h per household and month.
These values are higher than our demand values, thus this could explain
differences in results. The comparison is strongly influenced by the as-
sumed costs. The costs used by Deichmann et al. (2011) are comparable
to ours: USD 90,000 for the 132 kV lines and USD 192,000 for 220 kV
lines, production costs of USD 0.107 per kW h, USD 700 for a 50 W PV
set (USD 12,000 per kW capital costs and USD 1956 per kW O&M
costs). The costs for grid extension in Parshall et al. (2009) are
lower. They amount to USD 14,098 per km for a 132 kV line and
USD 90,000 for a 220 kV line of demand node connection costs and
USD 10,611 per km of household connection cost. In Parshall et al.
(2009) and Deichmann et al. (2011) PV system costs amount to
USD 600 for a 50 W PV system assuming lifetimes for the panel of
20 years, 3 years for the battery, and 10 years for the balance.

Our approach of combining both demand and supply analysis to-
gether as done in this paper is novel. As discussed, similar studies in
the past have used an engineering approach focusing on the supply
side optimization, but have tended to lack the necessary detail in the
estimation of demand, often assuming an average value for this. For
cost-effective planning of electricity infrastructure it is crucial to esti-
mate electricity demand and account for the heterogeneity in it across
regions. The contribution of our study lies in employing the combina-
tion of a regression model to estimate household electricity demand
and an electricity supply optimization model to identify least-cost elec-
trification options. The literature review revealed that none of the pa-
pers estimate currently uncovered electricity demand due to non-
availability of supply. When using the average demand of electrified
households instead of a model estimation, which accounts for heteroge-
neity in household characteristics, the demand might not represent dif-
ferences between districts. The differences in demand have been shown
to be a crucial variable in the sensitivity analysis. As discussed in the pre-
vious paragraph our results differ from other studies with a similar aim
which, however, do not model demand but use average consumption
categories either depending on household location (e.g. rural, urban)
or on income.

In its current version, the demand model does not consider prices of
electricity and its substitutes. With changes in demand, one can expect
changes in prices. Prices at the regional level are currently not available
and elasticities could not be calculated. In the short run and for interna-
tionally traded goods such as paraffin and oil, prices are likely not to be
affected by demand in Kenya.

A few caveats of our study need to be highlighted: (i) the spatial res-
olution may be too low to draw definite conclusions at the cell level. One
needs to be cautious when taking recommendations of this model and
applying them to individual towns or households. It might be advanta-
geous to electrify the cell in general through grid electrification, but this
may not hold for particular towns or households within the cell. (ii) Cur-
rently, we assume that grid electrification is always done by extension
of the existing grid. It may, however, be useful to build a new electricity
grid in cells which are relatively densely populated but far away from
the existing grid. (iii) Besides PV, there are other off-grid solutions for
electrifying rural areas such as diesel or biomass generators or small hy-
dropower plants. We did not assess those options in detail, but a prelim-
inary assessment of the relative cost-effectiveness between diesel and
solar off-grid options (in Appendix A.2) suggests that PV is the more
cost-effective stand-alone option.

Additional data and linkage with other tools could allow one to fur-
ther develop the model and answer a wide range of research and policy
relevant questions. First, one could carry out a dynamic assessment,
which would require modeling the influence of electricity access on de-
mand. Once electricity is available, demand may increase over time due
to additional economic growth. As there are different economies of scale

for grid extension and PV (grid extension getting much cheaper with in-
creased capacity, while PV has fewer economies of scale), at some point
in time grid extension is likely to be the cheaper solution. Our model is
currently static and the dataset available does not allow us to model the
effects of electricity access on demand. However, this would represent
interesting research for the future. Second, we assume that all regions
are given the same priority in supplying electricity. Other tools could
be developed to help identify priority regions for electrification based
on social or political factors. Finally, grid electricity may provide a differ-
ent quality of electricity compared to electricity from stand-alone sys-
tems. A higher security of supply cannot be attributed to one of the
two options. It depends on very specific factors such as the local capacity
to maintain and repair PV, the occurrence of severe weather and gener-
ation constraints leading to blackouts, the reliability of the electric grid
which may be low and the time it takes to repair line failures. However,
such conditions and events depend on specific circumstances for which
we don't have the necessary data and therefore, could not be accounted
for in this analysis. Standalone PV systems with batteries may have rath-
er strict capacity restrictions. However, stand-alone systems are chosen
in areas with low demand density which is a consequence of low mean
demand and low population density, the capacity restriction therefore
will not strongly affect results. The available demand data only includes
a small number of households using stand-alone systems. We are
therefore not able to estimate demand of households using stand-
alone systems. A difference in quality of electricity supply could lead
to households making different electric equipment purchasing deci-
sions. This would lead to a different development of electricity demand
in the long-term, and perhaps even influence the choice of electrifica-
tion mode directly, if households value reliability higher. The impact
of changing the source of power supply is just one of many factors
that may affect the (future) demand and load shape of the households,
including household income, power costs, availability, type of economic
activity, household composition. There is little data to support the dif-
ferentiation of power demand for the source of power.

Future research that builds on our analysis and accounts for
additional technological supply options, including renewable energy
technologies and decentralized mini-grids, limits in transmission and
generation capacities, as well as additional demand sectors, could pro-
vide more nuanced insights for future electrification planning in Kenya.
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